[1] Ramsey J K. NASA aeroelasticity handbook volume 2: design guides part 2, NASA/TP-2006-212490[R]. Cleveland: NASA Glenn Research Center, 2006.
[2] Felt L R, Huttsell L J, Noll T E, et al. Aeroservoelastic encounters[J]. Journal of Aircraft, 1979, 16(7): 477-483.
[3] Livne E, Weisshaar T A. Aeroelasticity of nonconventional airplane configurations—past and future[J]. Journal of Aircraft, 2003, 40(6): 1047-1065.
[4] Schuste D M, Liu D D, Huttsell L J. Computational aeroelasticity: success, progress, challenge[J]. Journal of Aircraft, 2003, 40(5): 843-856.
[5] Dowell E H, Edwards J, Strganac T. Nonlinear aeroelasticity[J]. Journal of Aircraft, 2003, 40(5): 857-874.
[6] Mukhopadhyay V. Historical perspective on analysis and control of aeroelastic responses[J]. Journal of Guidance, Control and Dynamics, 2003, 26(5): 673-684.
[7] Bhatia K G. Airplane aeroelasticity: practice and potential[J]. Journal of Aircraft, 2003, 40(6): 1010-1018.
[8] Cole S R, Noll T E, Perry B. Transonic dynamics tunnel aeroelastic testing in support of aircraft development[J]. Journal of Aircraft, 2003, 40(5): 820-831.
[9] Harris T M, Huttsell L J. Aeroelasticity research at Wright-Patterson air force base (wright field) from 1953—1993[J]. Journal of Aircraft, 2003, 40(5): 813-819.
[10] Livne E. Future of airplane aeroelasticity[J]. Journal of Aircraft, 2003, 40(6): 1066-1092.
[11] Karpel M. Procedures and models for aeroservoelastic analysis and design[J]. Journal of Applied Mathematics and Mechanics, 2001, 81(9): 579-592.
[12] Gupta K K, Meek J L. Finite element multidisciplinary analysis[M]. 2nd ed. Reston: AIAA, 2003: 295-310.
[13] Yang C, Wu Z G, Wan Z Q, et al. Principle of aircraft aeroelasticity[M]. Beijing: Beihang University Press, 2011: 148-167 (in Chinese). 杨超, 吴志刚, 万志强, 等. 飞行器气动弹性原理[M]. 北京: 北京航空航天大学出版社, 2011: 148-167.
[14] Rodden W P, Johnson E H. MSC/NASTRAN aeroelastic analysis user's guide[M]. Version 68. Los Angeles: MacNeal-Schwendler, 1994: 7-132.
[15] Gupta K K. STARS-An integrated, multidisciplinary, finite-element, structural, fluids, aeroelastic and aeroservoelastic analysis computer program, NASA/TM-1997-4795[R]. Edwards: NASA Dryden Flight Research Center, 1997.
[16] ZONA Technology. ZAERO user's manual[M]. Version 8.5. Scottsdale: ZONA Technology Inc., 2011: 458-488.
[17] Britt R T, Jacobson S B, Arthurs T D. Aeroservoelastic analysis of the B-2 bomber[J]. Journal of Aircraft, 2000, 37(5): 745-752.
[18] Pitt D M, Hayes W B, Goodman C E. F/A-18E/F aeroservoelastic design, analysis and test, AIAA-2003-1880[R]. Reston: AIAA, 2003.
[19] Wray W R. F-22 structural coupling lessons learned, RTO-MP-36-4[R]. Hull: Canada Communication Group Inc., 2000.
[20] Redd L T, Gilman J, Cooley D E, et al. Wind-tunnel investigation of a B-52 model flutter suppression system[J]. Journal of Aircraft, 1974, 11(11): 659-663.
[21] Roger K L, Hodges G E, Felt L. Active flutter suppression-a flight test demonstration[J]. Journal of Aircraft, 1975, 12(6): 551-556.
[22] Disney T E. C-5A active load alleviation system[J]. Journal of Spacecraft and Rockets, 1977, 14(2): 81-86.
[23] Hwang C, Johnson E H, Pi W S. Recent development of the YF-17 active flutter suppression system[J]. Journal of Aircraft, 1981, 18(7): 537-545.
[24] Murrow H N, Eckstrom C V. Drones for aerodynamic and structural testing (DAST)—a status report[J]. Journal of Aircraft, 1979, 16(8): 521-526.
[25] McGehee C R. Design verification and fabrication of active control systems for the DAST ARW-2 high aspect ratio wing, NASA/CR-1986-177959[R]. Hampton: NASA Langley Research Center, 1986.
[26] Perry B, Cole S R, Miller G D. Summary of an active flexible wing program[J]. Journal of Aircraft, 1995, 32(1): 10-15.
[27] Mukhopadhyay V. Flutter suppression control law design and testing for the active flexible wing[J]. Journal of Aircraft, 1995, 32(1): 45-51.
[28] Mason G S, Berg M C, Mukhopadhyay V. Multi-rate flutter suppression system design for the benchmark active control technology wing, Part I: theory and design procedure, NASA/TM-2002-212128[R]. Hampton: NASA Langley Research Center, 2002.
[29] Mason G S, Berg M C, Mukhopadhyay V. Multi-rate flutter suppression system design for the benchmark active control technology wing, Part II: methodology application software toolbox, NASA/TM-2002-212129[R]. Hampton: NASA Langley Research Center, 2002.
[30] Pendleton E W, Bessette D, Field P B, et al. Active aeroelastic wing flight research program: technical program and model analytical development[J]. Journal of Aircraft, 2000, 37(4): 554-561.
[31] Pendleton E W, Flick P, Paul D, et al. The X-53: a summary of the active aeroelastic wing flight research program, AIAA-2007-1855[R]. Reston: AIAA, 2007.
[32] Karpel M, Moulin B, Idan M. Robust aeroservoelastic design with structural variations and modeling uncertainties[J]. Journal of Aircraft, 2003, 40(5): 946-954.
[33] Dai Y T, Yang C. Methods and advances in the study of aeroelasticity with uncertainties[J]. Chinese Journal of Aeronautics, 2014, 27(3): 461-474.
[34] Waszak M R, Buttrill C S, Schmidt D K. Modeling and model simplification of aeroelastic vehicles: an overview, NASA/TM-1992-107691[R]. Hampton: NASA Langley Research Center, 1992.
[35] Dykman J R, Rodden W P. Structural dynamics and quasistatic aeroelastic equations of motion[J]. Journal of Aircraft, 2000, 37(3): 538-542.
[36] Baldelli D H, Chen P C, Panza J. Unified aeroelastic and flight dynamic formulation via rational function approximations[J]. Journal of Aircraft, 2006, 43(3): 763-772.
[37] Noll T E, Ishmeal S D, Henwood B, et al. Technical findings, lessons learned and recommendations resulting from the Helios prototype vehicle mishap, NASA/WBS-810031[R]. Hampton: NASA Langley Research Center, 2007.
[38] Shearer C M, Cesnik C E S. Nonlinear flight dynamics of very flexible aircraft[J]. Journal of Aircraft, 2007, 44(5): 1528-1545.
[39] Su W H, Cesnik C E S. Nonlinear aeroelasticity of a very flexible blended-wing-body aircraft[J]. Journal of Aircraft, 2010, 47(5): 1539-1553.
[40] Su W H, Cesnik C E S. Dynamic response of highly flexible flying wings[J]. AIAA Journal, 2011, 49(2): 324-339.
[41] Cesnik C E S, Senatore P J, Su W, et al. X-HALE: a very flexible unmanned aerial vehicle for nonlinear aeroelastic tests[J]. AIAA Journal, 2012, 50(12): 2820-2833.
[42] Banerjee J R. Flutter characteristics of high aspect ratio tailless aircraft[J]. Journal of Aircraft, 1984, 21(9): 733-736.
[43] Miller G D, Wykes J H, Brosnan M J. Rigid-body structural mode coupling on a forward swept wing aircraft[J]. Journal of Aircraft, 1983, 20(8): 696-702.
[44] Weisshaar T A, Zeiler T A. Dynamic stability of flexible swept wing aircraft[J]. Journal of Aircraft, 1983, 20(12): 1014-1020.
[45] Chipman R, Rauch F, Rimer M, et al. Body-freedom flutter of a 1-2 scale forward-swept-wing model an experimental and analytical study, NASA/CR-172324[R]. Hampton: NASA Langley Research Center, 1984.
[46] Soistmann D L, Spain C V. An experimental and analytical study of a lifting-body wind-tunnel model exhibiting body-freedom flutter, AIAA-1993-1316[R]. Reston: AIAA, 1993.
[47] Pike E C. Manual on aeroelasticity, AGARD-R-578-71[R]. London: AGARD/NATO, 1971.
[48] Beranek J, Nicolai L, Buonanno M, et al. Conceptual design of a multi-utility aeroelastic demonstrator, AIAA-2010-9350[R]. Reston: AIAA, 2010.
[49] Burnett E L, Atkinson C, Beranek J, et al. NDOF simulation model for flight control development with flight test correlation, AIAA-2010-7780[R]. Reston: AIAA, 2010.
[50] Love M H, Zink P S, Wieselmann P A, et al. Body freedom flutter of high aspect ratio flying wings, AIAA-2005-1947[R]. Reston: AIAA, 2005.
[51] Lucia D J. The Sensorcraft configuration: a nonlinear aeroservoelastic challenge for aviation, AIAA-2005-1943[R]. Reston: AIAA, 2005.
[52] Henshaw M J C, Badcock K J, Vio G A, et al. Non-linear aeroelastic prediction for aircraft application[J]. Progress in Aerospace Sciences, 2007, 43: 65-137.
[53] Chen P C, Lee D H. Flight-loads effects on horizontal tail free-play-induced limit cycle oscillation[J]. Journal of Aircraft, 2008, 45(2): 478-485.
[54] Tang D, Dowell E H. Aeroelastic response induced by free play, Part 1: theory[J]. AIAA Journal, 2011, 49(11): 2532-2542.
[55] Tang D, Dowell E H. Aeroelastic response induced by free play, Part 2: theoretical/experimental correlation analysis[J]. AIAA Journal, 2011, 49(11): 2543-2554.
[56] Tang D, Dowell E H. Computational/experimental aeroelastic study for a horizontal-tail model with free play[J]. AIAA Journal, 2013, 51(2): 341-352.
[57] Chen P C, Sulaeman E. Nonlinear response of aeroservoelastic systems using discrete state-space approach[J]. AIAA Journal, 2003, 41(6): 1658-1666.
[58] Danowsky B, Thompson P M, Kukreja S. Nonlinear analysis of aeroservoelastic models with free play using describing functions[J]. Journal of Aircraft, 2013, 50(2): 329-336.
[59] Banavara N K, Newsom J R. Framework for aeroservoelastic analysis involving nonlinear actuators[J]. Journal of Aircraft, 2012, 49(3): 774-780.
[60] Jacobson S B, Britt R T, Dreim D R. Residual pitch oscillation (RPO) flight test and analysis on the B-2 bomber, AIAA-1998-1805[R]. Reston: AIAA, 1998.
[61] Raveh D E. Computational-fluid-dynamics-based aeroelastic analysis and structural design optimization—a researcher's perspective[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194: 3453-3471.
[62] Lucia D J, Beran P S, Silva W A. Reduced-order modeling: new approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40: 51-117.
[63] Farhat C, Amesallem D. Recent advances in reduced-order modeling and application to nonlinear computational aeroelasticity, AIAA-2008-0562[R]. Reston: AIAA, 2008.
[64] Skujins T, Cesnik C E S. Toward an unsteady aerodynamic ROM for multiple mach regimes, AIAA-2012-1708[R]. Reston: AIAA, 2012.
[65] Lieu T, Farhat C. Adaptation of aeroelastic reduced-order models and application to an F-16 configuration[J]. AIAA Journal, 2007, 45(6): 1244-1257.
[66] Amsallem D, Farhat C. Interpolation method for adapting reduced-order models and application to aeroelasticity[J]. AIAA Journal, 2008, 46(7): 1803-1813.
[67] Amsallem D, Cortial J, Farhat C. Toward real-time computational-fluid-dynamics-based aeroelastic computations using a database of reduced-order information[J]. AIAA Journal, 2010, 48(9): 2029-2037.
[68] Berrier B L, Re R J. A review of thrust-vectoring schemes for fighter aircraft, AIAA-1978-1023[R]. Reston: AIAA, 1978.
[69] Friehmelt H. Thrust vectoring and tailless aircraft design—review and outlook, AIAA-1996-3412[R]. Reston: AIAA, 1996.
[70] Brenner M J. Aeroservoelastic modeling and validation of a thrust-vectoring F/A-18 aircraft, NASA/TP-1996-3647[R]. Edwards: NASA Dryden Flight Research Cen-ter, 1996.
[71] Kitowski J V. Fighter airframe/propulsion integration—a general dynamics perspective, AIAA-1992-3332[R]. Reston: AIAA, 1992.
[72] Mace J, Nyberg G. Fighter airframe/ propulsion integration-a McDonnell aircraft perspective, AIAA-1992-3333[R]. Reston: AIAA, 1992.
[73] Powers S A, Robinson M R. Fighter airframe/propulsion integration: a Rockwell perspective, AIAA-1992-3334[R]. Reston: AIAA, 1992.
[74] Mishler R, Tennessee N, Wilkinson T. Emerging air-frame/propulsion integration technologies at General Electric, AIAA-1992-3335[R]. Reston: AIAA, 1992.
[75] Liston G W, Small L L. Fighter airframe/propulsion integration a Wright Laboratory perspective, AIAA-1992-3337[R]. Reston: AIAA, 1992.
[76] Schierman J D, Schmidt D K. Analysis of airframe and engine control interactions and integrated flight/propulsion control[J]. Journal of Guidance, Control and Dynamics, 1992, 15(6): 1388-1396.
[77] Frendreis S G V, Cesnik C E S. 3D simulation of flexible hypersonic vehicles, AIAA-2010-8299[R]. Reston: AIAA, 2010.
[78] Wu Z G, Chu L F, Yang C, et al. Study on aeroservoelasticity of hypersonic vehicles with thrust coupling[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1355-1363 (in Chinese). 吴志刚, 楚龙飞, 杨超, 等. 推力耦合的高超声速飞行器气动伺服弹性研究[J]. 航空学报, 2012, 33(8): 1355-1363.
[79] Baldelli D H, Lind R, Brenner M. Nonlinear aeroelastic/aeroservoelastic modeling by block-oriented identification[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 1056-1064.
[80] Zeng J, Baldelli D H, Brenner M. Novel nonlinear hammerstein model identification: application to nonlinear aeroelastic/aeroservoelastic system[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1677-1686.
[81] Kukreja S L, Brenner M J. Nonlinear aeroelastic system identification with application to experimental data[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 374-381.
[82] Kukreja S L, Brenner M J. Nonlinear black-box modeling of aeroelastic systems using structure detection: application to F/A-18 data[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 557-564.
[83] Zeng J, Kukreja S L, Moulin B. Experimental model-based aeroelastic control for flutter suppression and gust-load alleviation[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(5): 1377-1390.
[84] Zeng J, Kukreja S L. Flutter prediction for flight/wind-tunnel flutter test under atmospheric turbulence excitation[J]. Journal of Aircraft, 2013, 50(6): 1696-1709.
[85] Miller D N, Callafon R A, Brenner M J. Covariance-based realization algorithm for the identification of aeroelastic dynamics[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(4): 1169-1177.
[86] Hammerand D C, Gariffo J M, Roughen K M. Improved computation of balancing transformations for aeroservoelastic models via time scale conversion[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(2): 475-483.
[87] Moreno C P, Seiler P J, Balas G J. Model reduction for aeroservoelastic systems[J]. Journal of Aircraft, 2014, 51(1): 280-290.
[88] Active control systems for load alleviation, flutter suppression and ride control, AGARD-AG-175[R]. London: Technical Editing and Reproduction Ltd., 1974.
[89] Advanced Aeroservoelastic testing and data analysis, AGARD-CP-556[R]. Hull: Canada Communication Group Inc., 1995.
[90] Zazzera F B, Mantegazza P, Mazzoni G, et al. Active flutter suppression using recurrent neural networks[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(6): 1030-1036.
[91] Applebaum E, Asher J B, Weller T. Fuzzy gain scheduling for flutter suppression in an unmanned aerial vehicle[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(6): 1123-1130.
[92] Shao K, Wu Z, Yang C, et al. Design of an adaptive gust response alleviation control system: simulations and experiments[J]. Journal of Aircraft, 2010, 47(3): 1022-1029.
[93] Shao K, Yang C, Wu Z, et al. Design of a gust-response-alleviation online control system based on neuro-fuzzy theory[J]. Journal of Aircraft, 2013, 50(2): 599-609.
[94] Chen L, Wu Z G, Yang C, et al. Active control and wind tunnel test verification of multi-control surfaces wing for gust alleviation[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2250-2256 (in Chinese). 陈磊, 吴志刚, 杨超, 等. 多控制面机翼阵风减缓主动控制与风洞试验验证[J]. 航空学报, 2009, 30(12): 2250-2256.
[95] Yang C, Song C, Wu Z G, et al. Active flutter suppression of airplane configuration with multiple control surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1501-1508 (in Chinese). 杨超, 宋晨, 吴志刚, 等. 多控制面机翼的全机颤振主动抑制设计[J]. 航空学报, 2010, 31(8): 1501-1508.
[96] Fuller J R. Evolution of airplane gust loads design requirements[J]. Journal of Aircraft, 1995, 32(2): 235-246.
[97] Noback R. Comparison of discrete and continuous gust methods for airplane design loads determination[J]. Journal of Aircraft, 1986, 23(3): 226-231.
[98] Eichenbaum F D. A general theory of aircraft response to three-dimensional random turbulence[J]. Journal of Aircraft, 1971, 8(5): 353-360.
[99] Tatom F B, Smith S R, Fichtl G H, et al. Simulation of atmospheric turbulent gusts and gust gradients[J]. Journal of Aircraft, 1982, 19(4): 264-271.
[100] Regan C D, Jutte C V. Survey of applications of active control technology for gust alleviation and new challenges for lighter-weight aircraft, NASA/TM-2012-216008[R]. Edwards: NASA Dryden Flight Research Center, 2012.
[101] Crimaldi J P, Britt R T, Rodden W P. Response of B-2 aircraft to nonuniform spanwise turbulence[J]. Journal of Aircraft, 1993, 30(5): 652-659.
[102] Flomenhoft H I. Brief history of gust models for aircraft design[J]. Journal of Aircraft, 1994, 31(5): 1225-1227.
[103] Jones J G. Statistical-discrete-gust method for predicting aircraft loads and dynamic response[J]. Journal of Aircraft, 1989, 26(4): 382-392.
[104] Perry B, Potozky A S, Woods J A. NASA investigation of a claimed "overlap" between two gust response analysis methods[J]. Journal of Aircraft, 1990, 27(7): 605-611.
[105] Etkin B. Comment on "NASA investigation of a claimed 'overlap' between two gust response analysis methods"[J]. Journal of Aircraft, 1992, 29(4): 741-742.
[106] Etkin B. Turbulent wind and its effect on flight[J]. Journal of Aircraft, 1981, 18(5): 327-345.
[107] Wildschek A, Maier R, Hoffmann F, et al. Active wing load alleviation with an adaptive feedforward control algorithm, AIAA-2006-6054[R]. Reston: AIAA, 2006.
[108] Zeng J, Moulin B, Callafon R, et al. Adaptive feedforward control for gust load alleviation[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 862-872.
[109] Peloubet R P, Haller R L, Bolding R M. Recent developments in the F-16 flutter suppression with active control program[J]. Journal of Aircraft, 1984, 21(9): 716-721.
[110] Livne E. Integrated aeroservoelastic optimization: status and direction[J]. Journal of Aircraft, 1999, 36(1): 122-145.
[111] Mor M, Livne E. Minimum-state unsteady aerodynamics for aeroservoelastic configuration shape optimization of flight vehicles[J]. AIAA Journal, 2005, 43(11): 2299-2308.
[112] Chen P C, Liu D D, Livne E. Unsteady aerodynamic shape sensitivities for airplane aeroservoelastic con-figuration optimization[J]. Journal of Aircraft, 2006, 43(2): 471-481.
[113] Mor M, Livne E. Sensitivities and approximations for aeroservoelastic shape optimization with gust response constraints[J]. Journal of Aircraft, 2006, 43(5): 1516-1527.
[114] Karpel M, Moulin B. Aeroservoelastic modeling and sensitivity analysis with strain actuators[J]. Journal of Aircraft, 2006, 43(4): 1235-1241.
[115] Jackson T, Livne E. Integrated aeroservoelastic design optimization of actively controlled strain-actuated flight vehicles[J]. AIAA Journal, 2014, 52(6): 1105-1123.
[116] Hanson P W. An aeroelastician's perspective of wind tunnel and flight experiences with active control of structural response and stability, NASA/TM-1984-85761[R]. Hampton: NASA Langley Research Center, 1984.
[117] Bogue R K, Jentink H W. Optical air flow measurements in flight, NASA/TP-2004-210735[R]. Edwards: NASA Dryden Flight Research Center, 2004.
[118] Soreide D, Bogue R K, Ehernberger L J, et al. Coherent lidar turbulence measurement for gust load alleviation, NASA/TM-1996-104318[R]. Edwards: NASA Dryden Flight Research Center, 1996.
[119] Inokuchi H, Tanaka H, Ando T. Development of an onboard Doppler lidar for flight safety[J]. Journal of Aircraft, 2009, 46(4): 1411-1415.
[120] Schmitt N P, Rehm W, Pistner T, et al. The AWIATOR airborne LIDAR turbulence sensor[J]. Aerospace Science and Technology, 2007, 11: 546-552.
[121] Rabadan G J, Schmitt N P, Pistner T, et al. Airborne lidar for automatic feedforward control of turbulent in-flight phenomena[J]. Journal of Aircraft, 2010, 47(2): 392-403.
[122] Mangalam S M. Flick P M, Brenner M J. Higher level aerodynamic input for aeroservoelastic control of flexible aircraft, AIAA-2007-6380[R]. Reston: AIAA, 2007.
[123] Mangalam A S, Mangalam S M, Flick P M. Unsteady aerodynamic observable for gust load alleviation and flutter suppression, AIAA-2008-7187[R]. Reston: AIAA, 2008.
[124] Mangalam A S, Brenner M J. Fly-by-feel sensing and control: aeroservoelasticity, AIAA-2014-2189[R]. Reston: AIAA, 2014.
[125] Mangalam S M. Real-time extraction of hydrodynamic flow characteristics using surface signatures[J]. IEEE Journal of Oceanic Engineering, 2004, 29(3): 622-630.
[126] Richards W L, Parker A R, Ko W L, et al. Application of fiber optic instrumentation, RTO-AG-160-V22[R]. Neuilly-sur-Seine: NATO Research and Technology Organisation, 2012.
[127] Ko W L, Richards W L, Tran V T. Displacement theories for in-flight deformed shape predictions of aerospace structures, NASA/TP-2007-214612[R]. Edwards: NASA Dryden Flight Research Center, 2007.
[128] Jutte C V, Ko W L, Stephens C A, et al. Deformed shape calculation of a full-scale wing using fiber optic strain data from a ground loads test, NASA/TP-2011-215975[R]. Edwards: NASA Dryden Flight Research Center, 2011.
[129] Ko W L, Fleischer V T. Improved displacement transfer functions for structure deformed shape predictions using discretely distributed surface strains, NASA/TP-2012-216060[R]. Edwards: NASA Dryden Flight Research Center, 2012.
[130] Graves S S, Burner A W, Edwards J W. Dynamic deformation measurements of an aeroelastic semispan model[J]. Journal of Aircraft, 2003, 40(5): 977-984.
[131] Burner A W, Lokos W A. Barrows D A. Aeroelastic deformation: adaptation of wind tunnel measurement concepts to full-scale vehicle flight testing, RTO-MP-AVT-124-9[R]. Neuilly-sur-Seine: NATO Research and Technology Organisation, 2005.
[132] Bisplinghoff R L, Ashley H, Halfman R L. Aeroelasticity[M]. 2nd ed. New York: Dover Publications, 1996: 695-716.
[133] Ivanco T G. Unique testing capabilities of the NASA Langley transonic dynamics tunnel, an exercise in aeroelastic scaling, AIAA-2013-2625[R]. Reston: AIAA, 2013.
[134] Friedmann P P, Presente E. Active control of flutter in compressible flow and its aeroelastic scaling[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(1): 167-175.
[135] Potozky A S. Scaling laws applied to a modal formulation of the aeroservoelastic equations, AIAA-2002-1598[R]. Reston: AIAA, 2002.
[136] Ouellette J A, Patil M J, Kapania R K. Scaling laws for flight control development and testing in the presence of aeroservoelastic interactions, AIAA-2012-4640[R]. Reston: AIAA, 2012.
[137] Zeng J, Kingsbury D W, Ritz E, et al. GVT-based ground flutter test without wind tunnel, AIAA-2011-1942[R]. Reston: AIAA, 2011.
[138] Zeng J, Chen P C, Ritz E, et al. Ground vibration test identified structure model for flutter envelope prediction, AIAA-2012-4856[R]. Reston: AIAA, 2012.
[139] Wu Z G, Chu L F, Yuan R Z, et al. Studies on aeroservoelasticity semi-physical simulation test for missiles[J]. Science China Technological Sciences, 2012, 55(9): 2482-2488.
[140] Xu Y T, Wu Z G, Yang C. Simulation of the unsteady aerodynamic forces for ground flutter simulation test[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1947-1957 (in Chinese). 许云涛, 吴志刚, 杨超. 地面颤振模拟试验中的非定常气动力模拟[J]. 航空学报, 2012, 33(11): 1947-1957.
[141] Morelli E A. Flight-test experiment design for characterizing stability and control of hypersonic vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3): 949-959.
[142] Bosworth J T, Stachowiak S J. Real-time stability margin measurements for X-38 robustness analysis, NASA/TP-2005-212856[R]. Edwards: NASA Dryden Flight Research Center, 2005.
[143] Baumann E. Tailored excitation for frequency response measurement applied to the X-43A flight vehicle, AIAA-2006-0638[R]. Reston: AIAA, 2006.
[144] Heeg J, Morelli E. Evaluation of simultaneous multisine excitation of the joined wing SensorCraft aeroelastic wind tunnel model, AIAA-2011-1959[R]. Reston: AIAA, 2011.
[145] Heeg J, Wieseman C D. System identification and uncertainty qualification using orthogonal excitations and the semi-span supersonic transport (S4T) model, AIAA-2012-1404[R]. Reston: AIAA, 2012.
[146] Cole S R, Garcia J L. Past, present, and future capabilities of the transonic dynamics tunnel from an aeroelasticity perspective, AIAA-2000-1767[R]. Reston: AIAA, 2000.
[147] Reed W H. Aeroelasticity matters: some reflections on two decades of testing in the NASA Langley transonic dynamics tunnel, NASA/TM-83210[R]. Hampton: NASA Langley Research Center, 1981.
[148] Abbott F T, Kelly H N, Hampton K D. Investigation of propeller-power-plant autoprecession boundaries for a dynamic-aeroelastic model of a four-engine turboprop transport airplane, NASA/TN-D-1806[R]. Hampton: NASA Langley Research Center, 1963.
[149] Chen G S, Dugundji J. Experimental aeroelastic behavior of forward-swept graphite/epoxy wings with rigid-body freedom[J]. Journal of Aircraft, 1987, 24(7): 454-462.
[150] Sharma V, Reichenbach E. Development of an innovative support system for SensorCraft model, AIAA-2011-1958[R]. Reston: AIAA, 2011.
[151] Gilman J, Bennett R M. A wind-tunnel technique for measuring frequency-response functions for gust load analyses[J]. Journal of Aircraft, 1966, 3(6): 535-540.
[152] Schweiger J. MDO concepts for an European research project on active aeroelastic aircraft, AIAA-2002-5403[R]. Reston: AIAA, 2002.
[153] Kuzmina S, Ishmuratov F, Zichenkov M, et al. Integrated numerical and experimental investigations of the active/passive aeroelastic concepts on the European research aeroelastic model EuRAM[J]. ASD Journal, 2011, 2(2): 31-51.
[154] Moulin B, Karpel M. Gust loads alleviation using special control surface[J]. Journal of Aircraft, 2007, 44(1): 17-25.
[155] Ricci S, Scotti A, Malecek J, et al. Experimental investigations of a vibration suppression system for a three surface aeroelastic model, AIAA-2005-2232[R]. Reston: AIAA, 2005.
[156] Ricci S, Scotti A. Aeroelastic testing on a three surface airplane, AIAA-2006-2189[R]. Reston: AIAA, 2006.
[157] Gaspari A, Ricci S, Riccobene L, et al. Active aeroelastic control over a multisurface wing: modeling and wind-tunnel testing[J]. AIAA Journal, 2009, 47(9): 1995-2010.
[158] Ricci S, Scotti A. Aeroelastic multi-surface roll control of a three surface wind tunnel model, AIAA-2009-2511[R]. Reston: AIAA, 2009.
[159] Ricci S, Scotti A. Gust response alleviation on flexible aircraft using multi-surface control, AIAA-2010-3117[R]. Reston: AIAA, 2010.
[160] Mattaboni M, Quaranta G, Mantegazza P. Active flutter suppression for a three-surface transport aircraft by recurrent neural networks[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1295-1307.
[161] Penning K B, Zink P C, Wei P. Aeroservoelastic analysis of a sensorcraft vehicle and comparison with wind tunnel data, AIAA-2009-2405[R]. Reston: AIAA, 2009.
[162] Scott R C, Vetter T K, Penning K B, et al. Aeroservoelastic testing of free flying wind tunnel models, Part 1: a sidewall supported semispan model tested for gust load alleviation and flutter suppression, NASA/TP-2013-218051[R]. Hampton: NASA Langley Research Center, 2013.
[163] Reichenbach E, Castelluccio M, Sexton B. Joined wing sensorcraft aeroservoelastic wind tunnel test program, AIAA-2011-1956[R]. Reston: AIAA, 2011.
[164] Scott R C, Vetter T K, Penning K B, et al. Aeroservoelastic testing of free flying wind tunnel models, Part 2: a centerline supported fullspan model tested for gust load alleviation, NASA/TP-2014-218170[R]. Hampton: NASA Langley Research Center, 2014.
[165] Silva W A, Perry B, Florance J R, et al. An overview of the semi-span super-sonic transport (S4T) wind-tunnel model program, AIAA-2012-1552[R]. Reston: AIAA, 2012.
[166] Perry B, Silva W A, Florance J R, et al. Plans and status of wind-tunnel testing employing an aeroservoelastic semispan model, AIAA-2007-1770[R]. Reston: AIAA, 2007.
[167] Wieseman C, Christhilf D, Perry B. Analytical and experimental evaluation of digital control systems for the semi-span super-sonic transport (S4T) wind tunnel model, AIAA-2012-1554[R]. Reston: AIAA, 2012.
[168] Sanetrik M D, Silva W A. Computational aeroelastic analysis of the semi-span super-sonic transport (S4T) wind-tunnel model, AIAA-2012-1556[R]. Reston: AIAA, 2012.
[169] Moulin B, Ritz E, Florance J R, et al. CFD-based classic and robust aeroservoelastic control for the supersonic semispan transport wind-tunnel model, AIAA-2010-7802[R]. Reston: AIAA, 2012.
[170] Bartley-Cho J D, Henderson J A. Design and analysis of HiLDA/AEI aeroelastic wind tunnel model, AIAA-2008-7191[R]. Reston: AIAA, 2008.
[171] Florance J R, Scott R C, Keller D F, et al. Lessons in the design and characterization testing of the semi-span super-sonic transport (S4T) wind-tunnel model, AIAA-2012-1553[R]. Reston: AIAA, 2012.
[172] Gupta K K, Bach C. Computational fluid dynamics-based aeroservoelastic analysis with Hyper-X application[J]. AIAA Journal, 2007, 45(7): 1459-1471.
[173] Yang C, Xu Y, Xie C C. Review of studies on aeroelasticity of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11 (in Chinese). 杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1): 1-11.
[174] Friedmann P P, Hodges D H. Rotary-wing aeroelasticity: a historical perspective[J]. Journal of Aircraft, 2003, 40(6): 1019-1046.
[175] Friedmann P P. Rotary-wing aeroelasticity: current status and future trends[J]. AIAA Journal, 2004, 42(10): 1953-1972.
[176] Feng B, Hesse H, Palacios R, et al. Model-based aeroservoelastic design and load alleviation of large wind turbines, AIAA-2014-0521[R]. Reston: AIAA, 2014.
[177] Weisshaar T A. Morphing aircraft systems: historical perspectives and future challenges[J]. Journal of Air-craft, 2013, 50(2): 337-353.
[178] Florance J P, Burner A W, Fleming G A, et al. Contributions of the NASA Langley research center to the DARPA/AFRL/NASA/Northrop Grumman smart wing program, AIAA-2003-1961[R]. Reston: AIAA, 2003.
[179] Nguyen N, Precup N, Urnes J, et al. Experimental investigation of a flexible wing with a variable camber continuous trailing edge flap design, AIAA-2014-2441[R]. Reston: AIAA, 2008.
[180] Precup N, Mor M, Livne E. Design, construction, and tests of an aeroelastic wind tunnel model of a variable camber continuous trailing edge flap (VCCTEF) concept wing, AIAA-2014-2442[R]. Reston: AIAA, 2014.
[181] Cavagna L, Ricci S, Travaglini L. Structural sizing, aeroelastic analysis, and optimization in aircraft conceptual design[J]. Journal of Aircraft, 2011, 48(6): 1840-1855.
[182] Quackenbush T R, Keller J D, Boschitsch A H, et al. Modeling tools for real-time aeroservoelastic simulation with nonlinear aerodynamics, AIAA-2009-6142[R]. Reston: AIAA, 2009.
[183] Chin A, Brenner M J, Pickett M D. Integration of aeroservoelastic properties into the NASA Dryden F/A-18 simulator using flight data from the active aeroelastic wing program, AIAA-2011-6206[R]. Reston: AIAA, 2011.
[184] Danowsky B P, Thompson P M, Lee D, et al. Modal isolation and damping for adaptive aeroservoelastic suppression, AIAA-2013-4743[R]. Reston: AIAA, 2013.
[185] Suh P M, Chin A W, Mavris D N. Robust modal filtering and control of the X-56A model with simulated fiber optic sensor failures, AIAA-2014-2053[R]. Reston: AIAA, 2014.
[186] Ryan J J, Bosworth J T, Burken J J, et al. Current and future research in active control of lightweight, flexible structures using the X-56 aircraft, AIAA-2014-0597[R]. Reston: AIAA, 2014. |