[1] Bortoff S A. Path planning for UAVs[C]//Proceedings of the 2000 American Control Conference, 2000, 1(6): 364-368.
[2] Beard R W, McLain T W, Goodrich M, et al. Coordinated target assignment and intercept for unmanned air vehicles[J]. IEEE Transactions on Robotics and Automation, 2002, 18(6): 911-922.
[3] Bellingham J, Tillerson M, Richards A, et al. Multi-task allocation and path planning for cooperating UAVs[M]//Cooperative Control: Models, Applications and Algorithms. Dordrecht: Kluwer Academic Publishers, 2003: 23-41.
[4] Pongpunwattana A. Real-time planning for teams of autonomous vehicles in dynamic uncertain environments[D]. Seattle: University of Washington, 2004.
[5] Ownby M. Mixed initiative control of automa-teams (mica)-a progress report, AIAA-2004-6483[R]. Reston: AIAA, 2004.
[6] Qian J, Xu X Z, Liu Z Y. Exploration of cruise missile trajectory planning techniques[J].Aerodynamic Missile Journal, 2008(1): 16-19.(in Chinese) 钱进, 徐兴柱, 刘赵云. 巡航导弹航迹规划技术初探[J]. 飞航导弹, 2008(1): 16-19.
[7] Zhao H, He H C, Zhao Z T, et al. A terrain analysis method and the application of it to route planning[J]. Journal of Air Force Engineering University: Natural Science Edition, 2006, 7(4): 36-38. (in Chinese) 赵红, 何华灿, 赵宗涛, 等. 一种地形分析方法在航迹规划中的应用[J]. 空军工程大学学报: 自然科学版, 2006, 7(4): 36-38.
[8] Zhao L, Murthy V R. Optimal flight path planner for an unmanned helicopter by evolutionary algorithms, AIAA-2007-6741[R]. Reston: AIAA, 2007.
[9] Zhang G L, Cao Y H, Su Y. Helicopter optimal trajectory planning and terrain following[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(5): 594-599. (in Chinese) 张广林, 曹义华, 苏媛. 直升机最优航迹规划与地形跟踪[J]. 南京航空航天大学学报, 2008, 40(5): 594-599.
[10] Pan L. Research on multi-objective mission planning methods and implement techniques under complex environment[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2003. (in Chinese) 潘亮. 复杂环境下多目标任务规划方法及实现技术研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2003.
[11] Kang B N, Tang S, Starkey R P. Optimal trajectories of hypersonic vehicle for global reach, AIAA-2008-2595[R]. Reston: AIAA, 2008.
[12] Peng S C. Trajectory planning and guidance technology of near-space supersonic cruise missile[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2011. (in Chinese) 彭双春. 临近空间超声速巡航导弹轨迹规划与制导技术研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2011.
[13] Johnson C L. Inverting the control ratio: human control of large autonomous teams[C]//Proceedings of the International Conference on Autonomous Agents and Multi-agent Systems, 2003.
[14] Chandler P R, Pachter M, Rasmussen S. UAV cooperative control[C]//Proceedings of the 2001 American Control Conference, 2001: 50-55.
[15] Sengupta R, Godbole D. Architectures for UCAV and results on multi-agent coordination[EB/OL]. (1998-07-21)[2012-11-07]. http://robotics.eecs.berkeley.edu/~sastry/ppt.files/ONR/prog-rep.ppt.
[16] Sastry S S. ONR UCAV project overview[EB/OL]. (1998-07-21)[2012-11-08]. http://robotics.eecs.berkeley.edu/~sastry/ppt.files/ONR/year1.ppt.
[17] Chandler P R, Pachter M. Hierarchical control for autonomous teams, AIAA-2001-4149[R]. Reston: AIAA, 2001.
[18] Chandler P R. Decentralized control for an autonomous team, AIAA-2003-6571[R]. Reston: AIAA, 2003.
[19] Rathinam S, Zennaro M. An architecture for UAV team control[C]//Proceedings of the 5th IFAC Symposium on Intelligent Autonomous Vehicles, 2004: 1-7.
[20] Shamma J. Cooperative control of distributed autonomous vehicles in adversarial environments[EB/OL]. (2006-08-14)[2007-10-04]. http://www.seas.ucla.edu/coopcontrol/.
[21] Butenko S, Murphey R, Pardalos P. Cooperative control: models, applications and algorithms[M]. Dordrecht: Kluwer Academic Publishers, 2006: 96-111.
[22] Honeywell Technology Center. Multi-agent self-adaptive CIRCA[EB/OL]. [2012-11-08]. http://www.htc.honeywell.com/projects/ants/6-00-quadcharts.ppt.
[23] Campbell M, D’Andrea R, Schneider D, et al. RoboFlag games using systems based, hierarchical control[C]//Proceedings of the American Control Conference, 2003: 661-666.
[24] Wong E M, Bourgault F, Furukawa T. Multi-vehicle Bayesian search for multiple lost targets[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005: 3169-3174.
[25] Bryson M T, Sukkarieh S. Decentralised trajectory control for multi-UAV SLAM[C]//Proceeding of the 4th International Symposium on Mechatronics and its Applications, 2007.
[26] Shen L C, Gao G H, Chang W S, et al. An open system approach to mission route planning[J]. Journal of Astronautics, 1998, 19(2): 13-18. (in Chinese) 沈林成, 高国华, 常文森,等. 开放式飞行任务规划方法[J]. 宇航学报, 1998, 19(2): 13-18.
[27] Min C W, Yuan J P. Introduction of military aircraft route planning[J]. Flight Dynamics, 1998, 16(4): 14-19. (in Chinese) 闵昌万, 袁建平. 军用飞行器航迹规划综述[J]. 飞行力学, 1998, 16(4): 14-19.
[28] Liu C A, Wang H P, Li W J. Coordinated path planning of attacking unmanned aerial vehicles[J]. Journal of Northwestern Polytechnical University, 2003, 21(6): 707-710. (in Chinese) 柳长安, 王和平, 李为吉. 攻击无人机的协同航路规划[J]. 西北工业大学学报, 2003, 21(6): 707-710.
[29] Zheng C W, Ding M Y, Zhou C P, et al. Coordinated route planning for multiple air vehicles[J]. Journal of Astronautics, 2003, 24(2): 115-120. (in Chinese) 郑昌文, 丁明跃, 周成平, 等. 多飞行器协调航迹规划方法[J]. 宇航学报, 2003, 24(2): 115-120.
[30] Gao X G, Fu X W, Song S M. Trajectory planning for multiple uninhabited combat air vehicles[J]. Systems Engineering — Theory & Practice, 2004, 24(5): 140-143. (in Chinese) 高晓光, 符小卫, 宋绍梅. 多UCAV航迹规划研究[J]. 系统工程理论与实践, 2004, 24(5): 140-143.
[31] Ye Y Y. Research on mission planning for cooperative UCAVs[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2005. (in Chinese) 叶媛媛. 多UCAV协同任务规划方法研究[D]. 长沙:国防科学技术大学机电工程与自动化学院, 2005.
[32] Long T. Research on distributed task allocation and coordination for multiple UCAVs cooperative mission control[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2006. (in Chinese) 龙涛. 多UCAV协同任务控制中的分布式任务分配与任务协调技术研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2006.
[33] Yan P. Research on methodology of route planning and task assignment for unmanned air vehicles[D]. Wuhan: Institute of Pattern Recognition and Artificial Intelligence, Huazhong University of Science & Technology, 2006. (in Chinese) 严平. 无人飞行器航迹规划与任务分配方法研究[D]. 武汉: 华中科技大学图像识别与人工智能研究所, 2006.
[34] Huo X H. Research on modeling and rolling optimization methods for multi-UCAV dynamic cooperative mission planning[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2008. (in Chinese) 霍霄华. 多UCAV动态协同任务规划建模与滚动优化方法研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2008.
[35] Duan H B, Ding Q X, Chang J J, et al. Multi-UCAVs task assignment simulation platform based on parallel ant colony optimization[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(s1): 192-197. (in Chinese) 段海滨, 丁全心, 常俊杰, 等. 基于并行蚁群优化的多无人作战飞机任务分配仿真平台[J]. 航空学报, 2008, 29(s1): 192-197.
[36] Peng H. Research on distributed cooperative area searching of multiple unmanned aerial vehicles[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2009. (in Chinese) 彭辉. 分布式多无人机协同区域搜索中的关键问题研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2009.
[37] Li Y. Research on resources allocation and formation trajectories optimization for multiple UAVs ground attack mission[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2011. (in Chinese) 李远. 多UAV协同任务资源分配与编队轨迹优化方法研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2011.
[38] Wang N. Research on route/sensor/weapon delivery integrated mission planning for combat aircraft[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2012. (in Chinese) 王楠. 作战飞机航线/传感器/武器投放综合任务规划技术[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2012.
[39] Gil A E, Passino K M, Cruz J B. Stable cooperative surveillance[C]//Proceedings of the 44th IEEE Conference on Decision and Control, 2005: 2182-2187.
[40] Campbell M E, Whitacre M W. Cooperative tracking using vision measurements on SeaScan UAVs[J]. IEEE Transactions on Control Systems Technology, 2007, 15(4): 613-627.
[41] Lua C A, Altenburg K, Nygard K E. Synchronized multi-point attack by autonomous reactive vehicles with simple local communication[C]//Proceedings of the 2003 IEEE Swarm Intelligence Symposium, 2003: 95-102.
[42] Kim J, Hespanha J P. Cooperative radar jamming for groups of unmanned air vehicles[C]//Proceedings of the 43rd Conference on Decision and Control, 2004, 1: 632-637.
[43] Secrest B R. Traveling salesman problem for surveillance mission using particel swarm optimization[D]. Wright-Patterson AFB: Air Force Institute of Technology, 2003.
[44] O’Rourke K P, Bailey T G, Hill R, et al. Dynamic routing of unmanned aerial vehicles using reactive tabu search[J]. Military Operations Research Journal, 2001(6): 5-30.
[45] Alighanbari M. Task assignment algorithms for teams of UAVs in dynamic environments[D]. Cambridge: Massachusetts Institute of Technology, 2004.
[46] Nygard K E, Chandler P R, Pachter M. Dynamic network flow optimization models for air vehicle resource allocation[C]//Proceedings of the 2001 American Control Conference, 2001, 3: 1853-1858.
[47] Alvaro E G. Stability analysis of network-based cooperative resource allocation strategies[D]. Columbus: Ohio State University, 2003.
[48] Brown D T. Routing unmanned aerial vehicles while considering general restricted operating zones[D]. Wright-Patterson AFB: Air Force Institute of Technology, 2001.
[49] Tian J. Modeling and optimization methods for multi-UAV cooperative reconnaissance mission planning problem[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2007. (in Chinese) 田菁. 多无人机协同侦察任务问题建模与优化技术研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2007.
[50] Shima T, Rasmussen S J, Sparks A G, et al. Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms [J]. Computers & Operations Research, 2006, 33(11): 3252-3269.
[51] Rasmussen S, Chandler P, Mitchell J W, et al. Optimal vs. heuristic assignment of cooperative autonomous unmanned air vehicles, AIAA-2003-5586[R]. Reston: AIAA, 2003.
[52] Wang L. Research on modeling and optimization methods for multi-UAV cooperative target tracking [D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2011. (in Chinese) 王林. 多无人机协同目标跟踪问题建模与优化技术研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2011.
[53] Atkinson M L. Contract nets for control of distributed agents in unmanned air vehicles, AIAA-2003-6532[R]. Reston: AIAA, 2003.
[54] Keviczky T, Borrelli F, Fregene K, et al. Decentralized receding horizon control and coordination of autonomous vehicle formations[J]. IEEE Transactions on Control Systems Technology, 2007, 16(1): 19-33.
[55] Li W, Cassandras C G. Centralized and distributed cooperative receding horizon control of autonomous vehicle missions[J]. Mathematical and Computer Modelling, 2006, 43(9-10): 1208-1228.
[56] Parunak H V D, Purcell M, O’Connell R. Digital pheromones for autonomous coordination of swarming UAVs, AIAA-2002-3446[R]. Reston: AIAA, 2002.
[57] Price I C. Evolving self-organized behavior for homogeneous and heterogeneous UAV or UCAV swarms[D]. Wright-Patterson AFB: Air Force Institute of Technology, 2006.
[58] Dionne D, Rabbath C A. Multi-UAV decentralized task allocation with intermittent communications: the DTC algorithm[C]//Proceedings of the 2007 American Control Conference, 2007: 5406-5411.
[59] Godwin M F, Spry S, Hedrick J K. Distributed collaboration with limited communication using mission state estimates[C]//Proceedings of the 2006 American Control Conference, 2006: 2040-2046.
[60] Liao Y, Jin Y, Minai A A, et al. Information sharing in cooperative unmanned aerial vehicle teams[C]//Proceedings of the 44th IEEE Conference on Decision and Control, 2005: 90-95.
[61] Thomas B J. Mission-planning concepts for interaction of multiple reconnaissance platforms[C]//Airborne Reconnaissance XVII, 1993: 6-12.
[62] Tattelman P, Madsen D M, Mozer J B, et al. Optimizing infrared and night vision goggle sensor performance by exploiting weather effects[C]//RTO SET Symposium on "E-O Propagation, Signature and System Performance Under Adverse Meteorological Conditions Considering Out-of-Area Operations", 1998: 25-1-25-6.
[63] Skoglar P, Nygards J, Bjrstrm R, et al. Path and sensor planning framework applicable to UAV surveillance with EO/IR sensors[R]. Stockholm: Swedish Defence Research Agency, 2005.
[64] Yang M Z, Yin J, Yu L. Research on operation distance of TV homer[J]. Electronics Optics & Control, 2003, 10(2): 27-30. (in Chinese) 杨满忠, 尹健, 于雷. 电视导引头作用距离研究[J]. 电光与控制, 2003, 10(2): 27-30.
[65] Chen Q. Study on systems of airborne squint mode and forward looking mode synthetic aperture radar[D]. Beijing: Institute of Electronics, Chinese Academy of Sciences, 2007. (in Chinese) 陈琦. 机载斜视及前视合成孔径雷达系统研究[D]. 北京: 中国科学院电子学研究所, 2007.
[66] West II W J. Developmental testing of a laser-guided bomb simulation, AIAA-2008-1629[R]. Reston: AIAA, 2008.
[67] Siewert C V L, Sussingham M J C, Farm J A. 6-DOF enhancement of precision guided munitions testing, AIAA-1998-0396[R]. Reston: AIAA, 1998.
[68] Geng L N. Study on release region calculation for guided bombs[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2009. (in Chinese) 耿丽娜. 制导炸弹投放区计算研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2009.
[69] Zhang Y, Wang N, Chen J, et al. Research on launch acceptable region for guided bombs in air-to-ground multi-target attack[J]. Acta Armamentarii, 2011, 32(12): 1474-1480. (in Chinese) 张煜, 王楠, 陈璟, 等. 空地多目标攻击中制导炸弹可投放区计算研究[J]. 兵工学报, 2011, 32(12): 1474-1480.
[70] Cao B W, Jiang C S, Yang M Z. Research on the damage potential of TV-command-guided air-to-ground missiles [J]. Electronics Optics & Control, 2004, 11(2): 31-34. (in Chinese) 曹邦武, 姜长生, 杨满忠. 电视指令制导空地导弹对目标的毁伤性能研究[J]. 电光与控制, 2004, 11(2): 31-34.
[71] Chi Y K. Evaluation of radar performance degradation due to standoff jamming[D]. Monterey: Naval Postgraduate School, 1992.
[72] Mears M J. Cooperative electronic attack using unmanned air vehicles[C]//Proceedings of the 2005 American Control Conference, 2005, 5: 3339-3347.
[73] Kim J, Hespanha J P. Cooperative radar jamming for groups of unmanned air vehicles[C]//Proceedings of the 43rd IEEE Conference on Decision and Control, 2004, 1: 632-637.
[74] Snyder D E, McNeese M D, Zaff B S, et al. Knowledge acquisition of tactical air-to-ground mission information using concept mapping[C]//Proceedings of the 1992 National Aerospace and Electronics Conference, 1992, 2: 668-674.
[75] Bo T. Research on human behavior representation of flighter dogfight combat[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2002.(in Chinese) 薄涛. 格斗空战行为建模技术研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2002.
[76] Wang N, Li Y, Bu Y L, et al. SAR sensor employment planning for tactical aircrafts[C]//The 2nd International Conference on Computer and Automation Engineering (ICCAE), 2010: 603-608.
[77] Wang N, Zhang W P, Zhang C J, et al. Optimization of tactical aircraft weapon delivery using tactics templates[C]//2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR), 2010: 21-27.
[78] Frazzoli E, Dahleh M A, Feron E. Real-time motion planning for agile autonomous vehicles[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 116-129.
[79] Goerzen C, Kong Z, Mettler B. A survey of motion planning algorithms from the perspective[J]. Journal of Intelligent & Robotic Systems, 2010, 57(1-4): 65-100.
[80] McLain T W, Chandler P R, Rasmussen S, et al. Cooperative control of UAV rendezvous[C]//Proceedings of the 2001 American Control Conference, 2001, 3: 2309-2314.
[81] Kavraki L E, Sevestka P, Latombe J C, et al. Probabilistic roadmaps for path planning in high dimensional configuration space[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4): 566-580.
[82] LaValle S M. Rapidly-exploring random trees: a new tool for path planning[R]. Ames: Computer Science Department, Iowa State University, 1998.
[83] Karaman S, Frazzoli E. Sampling-based algorithms for optimal motion planning[J]. International Journal of Robotics Research, 2011, 30(7): 846-894.
[84] Canny J F. The complexity of robot motion planning[M]. Cambridge: MIT Press, 1988: 1-18.
[85] Gao G H. Research on multi-path planning problem in large area[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 1999.(in Chinese) 高国华. 大范围多路径规划问题研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 1999.
[86] Betts J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193-207.
[87] Yong E M, Chen L, Tang G J. Survey of aircraft trajectory optimization methods[J]. Journal of Astronautics, 2008, 29(2): 398-406. (in Chinese) 雍恩米, 陈磊, 唐国金. 飞行器轨迹优化数值方法综述[J]. 宇航学报, 2008, 29(2): 398-406.
[88] Huang G Q, Lu Y P, Nan Y. A survey of numerical algorithms for trajectory optimization of flight vehicles[J]. Sci China Tech Sci, 2012, 42(9): 1016-1036. (in Chinese) 黄国强, 陆宇平, 南英. 飞行器轨迹优化数值算法综述[J]. 中国科学: 技术科学, 2012, 42(9): 1016-1036.
[89] Yang K, Sukkarieh S, Kang Y. Adaptive nonlinear model predictive path tracking control for a fixed-wing unmanned aerial vehicle, AIAA-2009-5622[R]. Reston: AIAA, 2009.
[90] Zhang Y, Chen J, Shen L C. Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control[J]. Chinese Journal of Aeronautics, 2013, 26(4): 1038-1056.
[91] Huntington G T. Advancement and analysis of Gauss pseudospectral transcription for optimal control problems[D]. Cambridge: Department of Aeronautics and Astronautics, Massachusettes Institute of Technology, 2007.
[92] Zhang Y, Chen J, Shen L C. Hybrid hierarchical trajectory planning for a fixed-wing UCAV performing air-to-surface multi-target attack[J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 536-552.
[93] Zhang Y, Zhang W P, Chen J, et al. Air-to-ground weapon delivery trajectory planning for UCAVs using Gauss pseudospectral method[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1240-1251. (in Chinese) 张煜, 张万鹏, 陈璟, 等. 基于Gauss伪谱法的UCAV对地攻击武器投放轨迹规划[J]. 航空学报, 2011, 32(7): 1240-1251.
[94] Yong E M, Tang G J, Chen L. Rapid trajectory optimization [JP2]for hypersonic reentry vehicle via Gauss pseudospectral[JP] method[J]. Journal of Astronautics, 2008, 29(6): 1766-1772. (in Chinese) 雍恩米, 唐国金, 陈磊. 基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化[J]. 宇航学报, 2008, 29(6): 1766-1772.
[95] Liu H F, Chen S F, Shen L C, et al. Tactical trajectory planning for stealth unmanned aerial vehicle to win the radar game[J]. Defence Science Journal, 2012, 62(6): 375-381.
[96] Chen S F, Liu H F, Shen L C, et al. Penetration trajectory planning based on radar tracking features for UAV[J]. Aircraft Engineering and Aerospace Technology, 2012, 85(1): 62-71.
[97] Milam M B. Real-time optimal trajectory generation for constrained dynamical systems[D]. Pasadena: California Institute of Technology, 2003.
[98] Frazzoli E. Robust hybrid control for autonomous vehicle motion planning[D]. Cambridge: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2001.
[99] Air force mission support system (AFMSS)[EB/OL]. (1999-01-09)[2012-11-07]. http://www.fas.org/man/dod-101/sys/ac/equip/afmss.htm.
[100] AN-SYQ-21 Tactical automated mission planning system (TAMPS)[EB/OL]. (1999-01-11) [2012-11-07]. http://www.fas.org/man/dod-101/[JP2]sys/ship/weaps/tamps.[JP]
htm.
[101] AN/TYQ-77 Aviation mission planning system (AMPS)[EB/OL]. (2011-07-07) [2012-11-07]. http://www.globalsecurity.org/military/systems/aircraft[JP2]/systems/an-[JP]
tyq-77.htm.
[102] Joint mission planning system[EB/OL]. (2011-07-07) [2012-11-07]. http://www.globalsecurity.org/military/systems/aircraft/systems/jmps.htm.
[103] Leavitt C A. Real-time in-flight planning[C]//Proceedings of the IEEE 1996 National Aerospace and Electronics Conferenc, 1996, 1: 83-89.
[104] F-16 AFTI Advanced fighter technology integration[EB/OL]. [2012-11-07]. http://www.f-16.net/f-16_versions_article13.html.
[105] Zhang Y. Research on air-to-ground attack trajectory planning for combat aircraft[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2012. (in Chinese) 张煜. 作战飞机空对地攻击轨迹规划技术研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2012.
[106] HELIPSYS[EB/OL]. [2013-12-09]. http://www.sagem.com/spip.php?rubrique76. |