﻿ 基于PMV-PPD的地面空调最佳送风速度
 文章快速检索 高级检索

Best wind speed of ground air conditioning system based on PMV-PPD
LIN Jiaquan, LI Wanwan
Institute of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
Received: 2016-12-30; Revised: 2017-04-06; Accepted: 2017-04-27; Published online: 2017-05-03 16:40
Foundation item: Joint Fund of the National Natural Science Foundation of China and the Civil Aviation Administration of China (U1433107); Natural Science Foundation of Tianjin (13JCYBJC42300)
Corresponding author. LIN Jiaquan, E-mail:jqlin@cauc.edu.cn
Abstract: To address poor cabin comfort and energy efficiency caused by constant-velocity air supply of ground air conditioning, the cabin simulation model for Boeing737 is built by CFD method. The size of the simulation cabin is the same as that of Boeing737. Validity of the model is verified by laboratory experiments. Based on this model, the effects of different air supply velocity on the temperature field and wind velocity field are simulated. The values of wind speed and temperature are used to calculate the PMV and PPD at the sample points. The relationship between the ground air conditioning air supply velocity and the PPD is also fitted by the Gaussian fitting curve method. The best air supply velocity range is obtained to meet the thermal comfort requirement, providing basis for energy-saving of ground air conditioning.
Key words: ground air conditioning     thermal comfort     numerical simulation     Gaussian fitting     best wind speed

1 研究方法

 图 1 地面空调系统 Figure 1 Ground air conditioning system

1.1 飞机客舱模型

 图 2 Boeing737客舱实验平台 Figure 2 Boeing737 cabin experimental platform

 图 3 飞机客舱三维示意图 Figure 3 3D diagram of aircraft cabin

 图 4 飞机客舱网格截面图 Figure 4 Cross-section diagram of aircraft cabin grid
1.2 流体动力学控制方程

 （1）

1.3 边界条件的设定

1) 进风口和出风口边界条件：进风口和出风口分别设置为速度入口和出流出口，湍流强度均为5%。

2) 飞机客舱壁面的热边界条件：飞机蒙皮、客舱外层玻璃受到外界热流和太阳辐射的共同作用，选择对流与外部辐射混合作为热边界条件；内客舱壁选择对流热交换作为边界条件，人体为固定温度。

3) 夏季太阳辐射边界条件：选取2016年6月15日12时天津机场环境进行数值模拟，太阳辐射强度为873.711 W/m2，飞机的方位为机头朝东。

1.4 CFD验证

 图 5 模拟舱内部测量装置 Figure 5 Internal measuring device in simulation cabin
 图 6 实验结果与模拟结果的温度值对比(实线为模拟值，离散点为实验值) Figure 6 Comparison of temperature experimental and simulation results (the solid line for simulation and discrete points for experiment)
2 仿真结果与分析 2.1 客舱内横截面的截取

 图 7 客舱内所选取的截面及采样点 Figure 7 Cross-section and sampling points in cabin
2.2 风速场模拟

 图 8 送风速度为2.0 m/s时的风速场 Figure 8 Wind velocity field for inlet wind speed=2.0 m/s

2.3 温度场模拟

 图 9 送风速度为2.0 m/s时的温度场 Figure 9 Temperature field for inlet wind speed=2.0 m/s

2.4 热舒适性分析

 （2）

 PMV Thermal sensation -3 Cold -2 Cool -1 Slightly cool 0 Neutral 1 Slightly warm 2 Warm 3 Hot

 图 10 送风速度为2.0 m/s时的PMV值 Figure 10 PMV value for inlet wind speed=2.0 m/s

 图 11 不同送风速度下的PMV平均值 Figure 11 Average value of PMV at different inlet wind speed

 （3）

 图 12 送风速度为2.0 m/s时的PPD值 Figure 12 PPD value for inlet wind speed=2.0 m/s

 图 13 不同送风速度下的PPD平均值 Figure 13 Average value of PPD at different inlet wind speed

 （4）

3 结论

1) 数值模拟所得结果与实验测量结果的对比证明了所建立的飞机客舱模型的合理性。

2) 结合热舒适性指标PMV-PPD，得到地面空调的最佳送风速度区间为[1.21, 2.48] m/s。

3) 相对于目前地面空调恒风速送风造成的过度制冷工况，以热舒适性评价指标为依据得到的最佳送风速度为客舱制冷，可以获得更好的客舱热舒适性，并节约能源。

 [1] 崔沈夷. 飞机地面空调的选用及其节能意义[J]. 暖通空调, 2013, 43(7): 30–36. CUI S Y. Selection of pre-conditioned air unit and energy saving significance[J]. Heating Ventilating & Air Conditioning, 2013, 43(7): 30–36. (in Chinese) Cited By in Cnki (10) | Click to display the text [2] 林美娜, 赵薰, 林运龄. 某国际机场飞机地面空调机组的研制及其关键技术[J]. 制冷与空调, 2014, 14(10): 75–78. LIN M N, ZHAO X, LIN Y L. Development of PCA for one international airport and its key technology[J]. Refrigeration and Air-conditioning, 2014, 14(10): 75–78. (in Chinese) Cited By in Cnki (2) | Click to display the text [3] 朱明勇, 招启军, 王博. 基于CFD和混合配平算法的直升机旋翼地面效应模拟[J]. 航空学报, 2016, 37(8): 2539–2551. ZHU M Y, ZHAO Q J, WANG B. Simulation of helicopter rotor in ground effect based on CFD method and hybrid trim algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2539–2551. (in Chinese) Cited By in Cnki | Click to display the text [4] 陈琦, 郭勇颜, 谢昱飞, 等. PID控制器与CFD的耦合模拟技术研究及应用[J]. 航空学报, 2016, 37(8): 2507–2516. CHEN Q, GUO Y Y, XIE Y F, et al. Research and application of coupled simulation techniques of PID controller and CFD[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2507–2516. (in Chinese) Cited By in Cnki | Click to display the text [5] SEMPEY A, INARD C, GHIAUS C, et al. Fast simulation of temperature distribution in air conditioned rooms by using proper orthogonal decomposition[J]. Building and Environment, 2009, 44(2): 280–289. Click to display the text [6] 赵树恩, 朱冰, 王荣, 等. 太阳辐射对汽车舱内热环境舒适性的影响研究与改善[J]. 流体机械, 2016, 44(7): 70–76. ZHAO S E, ZHU B, WANG R, et al. Study of influence on the comfort of vehicle cabin thermal environment and improve cabin thermal environment comfort[J]. Fluid Machinery, 2016, 44(7): 70–76. (in Chinese) Cited By in Cnki | Click to display the text [7] MAZUMDAR S, CHEN Q Y. Response of contaminant detection sensors and sensor systems in a commercial aircraft cabin[C]//Proceedings of the 10th International IBPSA Conference(Building Simulation 2007), 2007:854-861. [8] DYGERT R K, DANG T Q. Experimental validation of local exhaust strategies for improved IAQ in aircraft cabins[J]. Building and Environment, 2012, 47(1): 76–88. Click to display the text [9] FIŠER J, JÍCHA M. Impact of air distribution system on quality of ventilation in small aircraft cabin[J]. Building and Environment, 2013, 69(11): 171–182. Click to display the text [10] 孙贺江, 吴尘, 安璐. 大型客机座舱混合送风形式的数值模拟[J]. 应用力学学报, 2013, 30(3): 439–444. SUN H J, WU C, AN L. Numerical study of mixing ventilation systems in commercial aircraft cabin[J]. Chinese Journal of Applied Mechanics, 2013, 30(3): 439–444. (in Chinese) Cited By in Cnki (7) | Click to display the text [11] YOU R Y, CHEN J, SHI Z, et al. Experimental and numerical study of airflow distribution in an aircraft cabin mock-up with a gasper on[J]. Journal of Building Performance Simulation, 2015, 9(5): 555–566. Click to display the text [12] 刘俊杰, 李炳烨, 裴晶晶, 等. 不同季节飞机客舱环境的主客观实验研究[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(2): 103–110. LIU J J, LI B Y, PEI J J, et al. Subjective and objective experimental study of cabin environment in different seasons[J]. Journal of Tianjin University (Science and Technology), 2015, 48(2): 103–110. (in Chinese) Cited By in Cnki (5) | Click to display the text [13] ZHANG T F, CHEN Q Y. Novel air distribution systems for commercial aircraft cabins[J]. Building and Environment, 2007, 42(4): 1675–1684. Click to display the text [14] 孙贺江, 李卫娟, 杨斌. 客机座舱新型个性座椅送风系统的数值仿真[J]. 天津大学学报(自然科学与工程技术版), 2013, 46(1): 16–21. SUN H J, LI W J, YANG B. Numerical simulation of a novel personalized air distribution system for commercial aircraft cabins[J]. Journal of Tianjin University (Science and Technology), 2013, 46(1): 16–21. (in Chinese) Cited By in Cnki (7) | Click to display the text [15] ZHANG T F, LI P H, WANG S G. A personal air distribution system with air terminals embedded in chair armrests on commercial airplanes[J]. Building and Environment, 2012, 47(1): 89–99. Click to display the text [16] 孙智, 孙建红, 赵明, 等. 基于改进PMV指标的飞机驾驶舱热舒适性分析[J]. 航空学报, 2015, 36(3): 819–826. SUN Z, SUN J H, ZHAO M, et al. Analysis of thermal comfort in aircraft cockpit based on the modified PMV index[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 819–826. (in Chinese) Cited By in Cnki (3) | Click to display the text [17] SARBU I, PACURAR C. Experimental and numerical research to assess indoor environment quality and schoolwork performance in university classrooms[J]. Building and Environment, 2015, 93(P2): 141–154. Click to display the text [18] YANG L, YAN H Y, LAM J C. Thermal comfort and building energy consumption implications-A review[J]. Applied Energy, 2014, 115(4): 164–173. Click to display the text [19] 孙贺江, 安璐, 冯壮波, 等. 客机驾驶舱流场CFD模拟与热舒适性分析[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(4): 298–303. SUN H J, AN L, FENG Z B, et al. CFD simulation and thermal comfort analysis in an airliner cockpit[J]. Journal of Tianjin University (Science and Technology), 2014, 47(4): 298–303. (in Chinese) Cited By in Cnki (11) | Click to display the text [20] CHEN Q Y. Comparison of different k-ε models for indoor air flow computations[J]. Numerical Heat Transfer, Part B:Fundamentals, 1995, 28(3): 353–369. Click to display the text [21] 黄衍, 段然, 李炳烨, 等. 飞机座舱个性送风下的气态污染物传播规律实例研究[J]. 应用力学学报, 2015, 32(4): 586–592. HUANG Y, DUAN R, LI B Y, et al. Simulation of contaminant transportation in aircraft cabin with partly gaspers on[J]. Chinese Journal of Applied Mechanics, 2015, 32(4): 586–592. (in Chinese) Cited By in Cnki (2) | Click to display the text [22] American Society of Heating, Refrigerating, and Air-Conditioning Engineers. ANSI/ASHRAE Standard 161-2007 Air quality within commercial aircraft[S]. Atlanta:American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2007. [23] American Society of Heating, Refrigerating and air-conditioning engineers. ANSI/ASHRAE Standard 55-2004 Thermal environmental conditions for human occupancy[S]. Atlanta:American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2004. Click to display the text
http://dx.doi.org/10.7527/S1000-6893.2017.121089

0

#### 文章信息

LIN Jiaquan, LI Wanwan

Best wind speed of ground air conditioning system based on PMV-PPD

Acta Aeronautica et Astronautica Sinica, 2017, 38(8): 121089.
http://dx.doi.org/10.7527/S1000-6893.2017.121089