﻿ 低能量状态对飞行安全的危害及改出方法
 文章快速检索 高级检索

Hazards of low energy state to flight safety and recovery methods
CHEN Junping, WANG Lixin
School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China
Received: 2016-12-26; Revised: 2017-02-15; Accepted: 2017-04-14; Published online: 2017-04-17 17:39
Corresponding author. WANG Lixin, E-mail:wlx_c818@163.com
Abstract: The low energy state which may induce flight accidents during the approach and landing phases of civil aircraft and the pilot's recovery methods are studied. According to the analysis reports of civil aircraft accidents in recent years and the requirements of airworthiness standards for civil transport aircraft CCAR-25-R4, flight test guide AC25-7C, military specifications and related industry standards, the quantitative criteria for the low energy state of land leveling, crosswind landing, and controlled flight into terrain are set up. Taking a regional jet as an example, we study the flight safety problems and characteristics of the low kinetic energy and the low potential energy state during the approach and landing by using digital simulation method. A method for increasing the speed and suppressing the climb is proposed for low kinetic energy recovery. A method for increasing the pitch attitude and maintaining the speed is also proposed for low potential energy recovery. Simulation results show the effectiveness of the two methods. The research results can provide a theoretical reference for the design of low energy alarm system and the training of pilots.
Key words: civil aircraft     low energy     flight safety     low energy criteria     recovery methods

1 低能量状态的定义与判定 1.1 低能量状态的定义

1.2 低动能的判定

1.2.1 着陆拉平

1) 操纵效能限制

 Energy state Pitch controlforce/kg Steady-statenormal overload Normal 22.68 ≥+1.3g Low 22.68 ＜+1.3g
 （1）

2) 护尾角限制

 （2）

1.2.2 侧风着陆

 Energystate Roll controlforce/kg Yaw controlforce/kg Crosswindvelocity/(m·s-1) Normal ≤4.54 ≤45.4 ≥12.86 Low 4.54-9.07 45.4-68.04 ＜12.86
 （3）

1.3 低势能的判定

 图 1 进近阶段低势能区域 Figure 1 Low potential energy area of approaching phase
 （4）

 （5）
2 低能量状态对飞行安全的危害

2.1 数字虚拟飞行仿真计算模型

1) 飞机运动模型

 （6）
 （7）

 图 2 飞控系统基本模型 Figure 2 Basic model for flight control system

2) 驾驶员操纵模型

 图 3 人机闭环系统结构图 Figure 3 Diagram of man-aircraft closed-loop system
 （8）

YPγ为航迹倾角跟踪模型，采用比例积分和延迟环节[17]，可表示为

 （9）

YPθ为俯仰角控制模型，采用增加了角加速度感受的McRuer模型[18-22]，如图 4所示。图中：Hpn为McRuer模型回路；θerr为控制俯仰角误差；Hpm为驾驶员加速度感受回路；为控制俯仰角角加速度；δec为驾驶员模型生成的升降舵偏度指令。Hpn回路中，eτns为驾驶员的信息反应时延环节，Hec(s)为无时间延迟的McRuer模型，可表示为

 图 4 俯仰角控制模型 Figure 4 Pitching angle control model
 （10）

Hpm回路中，km为驾驶员运动感官增益，eτms为驾驶员运动神经延迟环节，Hscc(s)为人体内耳前庭器官的半规管模型，可表示为[18]

 （11）

 （12）

3) 突风模型及其对空速和气动角的影响

 （13）

 （14）

 （15）
2.2 低动能状态

 Parameter kPV TIV τV kPγ kIγ τγ kPθ TLθ TIθ τn km τm Value 0.15 0.3 0.2 1.1 1.1 0.15 1.2 0.75 0.01 0.15 1.5 0.1
 图 5 低动能状态的影响 Figure 5 Influence of low kinetic energy state

2.3 低势能状态

 图 6 低势能状态的影响 Figure 6 Influence of low potential energy state

 （16）

3 低能量状态改出方法

3.1 低动能状态改出

 图 7 低动能状态改出 Figure 7 Recovery of low kinetic energy state

3.2 低势能状态改出

 图 8 低势能改出的人机闭环系统结构图 Figure 8 Diagram of man-aircraft closed-loop system for low potential energy recovery

 Parameter kPθ TLθ TIθ τn km τm Value 1.1 0.4 0.08 0.2 1.7 0.1

 图 9 低势能状态改出 Figure 9 Recovery of low potential energy state

4 结论

1) 低动能状态下飞机抗风能力下降，各操纵面的操纵效率下降，易导致驾驶员操纵困难，甚至舵面饱和也不能满足飞机操纵效能的要求而诱发飞行事故。根据民机进近着陆阶段的特点及CCAR-25-R4等标准的要求，提出了着陆时涉及过载限制、护尾角限制和侧风限制的低动能判据。

2) 低势能状态下飞机的飞行高度明显低于基准下滑道，在进近着陆末端，飞机速度已接近甚至处于操纵反区，驾驶员恢复航迹高度的操纵困难，易诱发重着陆或提前接地等事故。根据现代民用机场的ILS特点，提出了进近阶段的低势能判据。

3) 针对低动能状态，驾驶员应采用增加速度并抑制爬升的改出方法；针对低势能状态，驾驶员应采用增大俯仰姿态并保持速度的改出方法。

 [1] 霍志勤, 罗帆. 近十年中国民航事故及事故征候的统计分析[J]. 中国安全科学学报, 2006, 16(12): 65–71. HUO Z Q, LUO F. Statistic analysis on accidents and incidents in the last decade in China civil aviation[J]. China Safety Science Journal, 2006, 16(12): 65–71. (in Chinese) Cited By in Cnki (83) | Click to display the text [2] 罗晓利. 人因(HF)事故与事故征候分类标准及近十二年中国民航HF事故与事故征候的分类统计报告[J]. 中国安全科学学报, 2002, 12(5): 1–8. LUO X L. Categorization norm for human factor accidents and accidental signs and the statistics of China civil aviation in recent twelve years[J]. China Safety Science Journal, 2002, 12(5): 1–8. (in Chinese) Cited By in Cnki (52) | Click to display the text [3] DUVEN J E. Special conditions:Airbus model A350-900 series airplane; Electronic flight-control system; Lateral-directional and longitudinal stability, and low-energy awareness:FAA-2013-0904[R]. Washington, D.C.:FAA, 2013. [4] BAHRAMI A. Special conditions:Embraer S.A., model EMB-550 airplane; Electronic flight control system; Lateral-directional and longitudinal stability and low energy awareness:FAA-2012-1218[R]. Washington, D.C.:FAA, 2012. Click to display the text [5] KASZYCKI M. Special conditions:Bombardier aerospace, models BD-500-1A10 and BD-500-1A11; Electronic flight control system; Lateral-directional and longitudinal stability and low-energy awareness:FAA-2015-0455[R]. Washington, D.C.:FAA, 2015. [6] SHISH K, KANESHIGE J, ACOSTA D, et al. Trajectory prediction and alerting for aircraft mode and energy state awareness:AIAA-2015-1113[R]. Reston, VA:AIAA, 2015. Click to display the text [7] STEPANYAN V, KRISHNAKUMAR K, KANESHIGE J, et al. Stall recovery guidance algorithms based on constrained control approaches:AIAA-2016-0878[R]. Reston, VA:AIAA, 2016. Click to display the text [8] MULGUND S S, STENGEL R F. Optimal recovery from microburst wind shear[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(6): 1010–1017. Click to display the text [9] 中国民用航空局. 运输类飞机适航标准: CCAR-25-R4[S]. 北京: 中国民用航空局, 2011. Civil Aviation Administration of China. Airworthiness standards of transport category aircraft:CCAR-25-R4[S]. Beijing:Civil Aviation Administration of China, 2011(in Chinese). [10] 修忠信, 由立岩. 运输类飞机合格审定——飞行试验指南[M]. 上海: 上海交通大学出版社, 2013. XIU Z X, YOU L Y. Flight test guide for certification of transport category airplanes[M]. Shanghai: Shanghai Jiao Tong University Press, 2013. (in Chinese) [11] U.S. Department of Defense. Flying qualities for piloted airplanes:MIL-SPEC-8785C[S]. Washington, D.C.:Department of Defense, 1980. [12] U.S. Department of Defense. Flying qualities for piloted airplanes:MIL-STD-1797A[S]. Washington, D.C.:Department of Defense, 1987. [13] Federal Aviation Administration. Windshear training aid[M]. . [14] 高浩, 朱培申, 高正红. 高等飞行动力学[M]. 北京: 国防工业出版社, 2004: 2-6. GAO H, ZHU P S, GAO Z H. Advanced flight dynamics[M]. Beijing: National Defense Industry Press, 2004: 2-6. (in Chinese) [15] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力[M]. 北京: 北京航空航天大学出版社, 2005. FANG Z P, CHEN W C, ZHANG S G. Aircraft flight dynamics[M]. Beijing: Beihang University Press, 2005. (in Chinese) [16] 高金源, 李陆豫, 冯亚昌. 飞机飞行品质[M]. 北京: 国防工业出版社, 2003: 139-143. GAO J Y, LI L Y, FENG Y C. Aircraft handing qualities[M]. Beijing: National Defense Industry Press, 2003: 139-143. (in Chinese) [17] 贾重任, 黄成涛, 王立新. 空中最小操纵速度的人机闭环数学仿真计算[J]. 北京航空航天大学学报, 2013, 39(5): 580–584. JIA Z R, HUANG C T, WANG L X. Mathematical simulation method to calculate air minimum control speed[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5): 580–584. (in Chinese) Cited By in Cnki (4) | Click to display the text [18] HOSMAN R, STASSEN H. Pilot's perception in the control of aircraft motions[J]. Control Engineering Practice, 1999, 7(11): 1421–1428. Click to display the text [19] POOL D M, ZAAL P M T, DAMVELD H J, et al. Pilot equalization in manual control of aircraft dynamics[C]//Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ:IEEE Press, 2009:2480-2485. Click to display the text [20] HOSMAN R, VON DER GEEST P, VON DER ZEE J. Development of a pilot model for the manual balked landing maneuver:AIAA-2009-5818[R]. Reston, VA:AIAA, 2009. Click to display the text [21] HOSMAN R, SCHURING J, VON DER GEEST P. Pilot model development for the manual balked landing maneuver:AIAA-2005-5884[R]. Reston, VA:AIAA, 2005. [22] ZAAL P M T, POLL D M, BRUIN J D, et al. Pilots' use of pitch and heave motion cues in pitch control task:AIAA-2008-6537[R]. Reston, VA:AIAA, 2008. [23] 陈俊平, 王立新. 民机横航向静稳定性适航符合性数学仿真评估[J]. 北京航空航天大学学报, 2017, 43(2): 301–310. CHEN J P, WANG L X. Mathematical simulation and evaluation for lateral-directional static stability airworthiness compliance of civil aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 301–310. (in Chinese) Cited By in Cnki | Click to display the text [24] 肖业伦, 金长江. 大气扰动中的飞行原理[M]. 北京: 国防工业出版社, 1993. XIAO Y L, JIN C J. Flight principle in the atmosphere perturbation[M]. Beijing: National Defense Industry Press, 1993. (in Chinese) [25] 黄成涛, 王立新. 风雨对飞机飞行安全性的影响[J]. 航空学报, 2010, 31(4): 694–700. HUANG C T, WANG L X. Effects of rain and wind on aircraft flight safety[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4): 694–700. (in Chinese) Cited By in Cnki (14) | Click to display the text [26] MAHR E M, COKER M F, CRAIG R P, et al. 737-600/700/800/900/900ER Flight crew training manual[M]. Chicago: The Boeing Company, 2007.
http://dx.doi.org/10.7527/S1000-6893.2017.121077

0

#### 文章信息

CHEN Junping, WANG Lixin

Hazards of low energy state to flight safety and recovery methods

Acta Aeronautica et Astronautica Sinica, 2017, 38(8): 121077.
http://dx.doi.org/10.7527/S1000-6893.2017.121077