Please wait a minute...
航空学报
  首页 | 关于本刊 | 编 委 会 | 最新录用 | 过刊浏览 | 期刊征订 | 下载中心 | 广告服务 | 博客 | 论坛 | 联系我们 | English
航空学报  2017, Vol. 38 Issue (8): 421145-421145    DOI: 10.7527/S1000-6893.2017.421145
  材料工程与机械制造 本期目录 | 过刊浏览 | 高级检索 |
行星机构的可靠性分析与计算
李铭1, 谢里阳1, 丁丽君2
1. 东北大学 机械工程与自动化学院, 沈阳 110819;
2. 中国航发黎明运行保障中心, 沈阳 110000
Reliability analysis and calculation for planetary mechanism
LI Ming1, XIE Liyang1, DING Lijun2
1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;
2. AECC Liming Operation Support Center, Shenyang 110000, China
下载:  PDF(4498KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

行星机构的结构设计缺陷、制造与安装误差、支撑构件刚度不足等原因可能会使系统发生一定程度的偏载,从而会影响整个机构的使用寿命与可靠性。利用最小次序统计量的概念建立了行星齿轮系的可靠度计算模型,模型反映了偏载对齿轮系可靠性的影响。首先,对行星机构进行了详细的运动学和力学分析,计算得到了各个齿轮的随机载荷历程。根据Miner线性疲劳累积损伤法则,将随机载荷历程转化为等效恒幅载荷谱,并将其作为可靠性模型的载荷输入变量。然后,将特定齿轮的疲劳寿命数据进行统计处理,将统计结果作为可靠性模型的强度输入变量。最后,根据模型的计算结果定量地说明了偏载对行星齿轮系可靠性的影响程度,同时利用随机截尾数据处理方法对可靠性模型的有效性进行了验证。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李铭
谢里阳
丁丽君
关键词:  行星机构偏载分析可靠度计算疲劳寿命弯曲应力计算;    
Abstract: 

For a planetary mechanism, structural design defects, manufacturing and installation errors, lack of stiffness of the support structure and other factors may cause to a certain degree unequal load sharing, thus affecting the life and reliability of the entire body. A reliability prediction model for the planetary gear set is established by using the concept of minimum order statistics, and the model reflects the influence of partial load on the reliability of the planetary gear set. A detailed kinematics and mechanics analysis of the mechanism is carried out, and the random load histories of each gear are calculated. According to the law of Miner linear fatigue cumulative damage, the random load histories are transformed into equivalent constant amplitude load spectrums, which are taken as the load input variable for the reliability model. The fatigue life data of specific gears are then statistically processed, and the treated life information is used as the strength input variable for the reliability model. According to the prediction result of the model, the adverse effects of partial load on the reliability of the planetary gear set are quantitatively explained, and the effectiveness of the model is verified by randomly censored data processing.

Key words:  planetary mechanism;    partial load analysis;    reliability calculation;    fatigue life;    bending stress calculation;
收稿日期:  2017-01-17      修回日期:  2017-02-17           出版日期:  2017-08-15      发布日期:  2017-05-18      期的出版日期:  2017-08-15
ZTFLH:  V215.7  
  TB302.3  
基金资助: 

国家科技支撑计划(2014BAF08B01);国家自然科学基金(51335003)

通讯作者:  谢里阳,E-mail:sysyxie@163.com    E-mail:  sysyxie@163.com
引用本文:    
李铭, 谢里阳, 丁丽君. 行星机构的可靠性分析与计算[J]. 航空学报, 2017, 38(8): 421145-421145.
LI Ming, XIE Liyang, DING Lijun. Reliability analysis and calculation for planetary mechanism. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(8): 421145-421145.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2017.421145  或          http://hkxb.buaa.edu.cn/CN/Y2017/V38/I8/421145

[1] HIDAKA T, TERAUCHI Y. Dynamic behavior of planetary gear (1st report load distribution in planetary gear)[J]. Bulletin of the JSME, 1976, 19(132):690-698.
[2] HIDAKA T, TERAUCHI Y, DOHI K. On the relation between the run out errors and the motion of the center of sun gear in a stoeckicht planetary gear[J]. Bulletin of the JSME, 1979, 22(167):748-754.
[3] HIDAKA T, TERAUCHI Y, NAGAMURA K. Dynamic behavior of planetary gear (7th report influence of the thickness of ring gear)[J]. Bulletin of the JSME, 1979, 22(170):1142-1149.
[4] MULLER H W. Epicyclic drive trains[D]. Detroit:Wayne State University, 1982.
[5] SEAGER D L. Load sharing among planet gears:700178[R]. SAE, 1970.
[6] KASUBA R, AUGUST R. Torsional vibrations and dynamic loads in a basic planetary gear system[J]. Journal of Vibration and Acoustics, 1986, 108(3):348-353.
[7] MA P, BOTMAN M. Load sharing in a planetary gear stage in the presence of gear errors and misalignments[J]. Journal of Mechanisms, Transmissions, and Automation in Design, 1985, 107:1-7.
[8] JARCHOW F. Development status of epicyclic gears[C]//ASME International Power Transmission and Gearing Conference. New York:ASME, 1989:48-53.
[9] HAYASHI T, LI Y, HAYASHI I. Measurement and some discussions on dynamic load sharing in planetary gears[J]. Bulletin of the JSME, 1986, 29(253):2290-2297.
[10] KAHRAMAN A. Load sharing characteristics of planetary transmissions[J]. Mechanism and Machine Theory, 1994, 29(8):1151-1165.
[11] KAHRAMAN A. Static load sharing characteristics of transmission planetary gear sets:Model and experiment:1999-01-1050[R]. SAE, 1999.
[12] YANG Q. Fatigue test and reliability design of gears[J]. International Journal of Fatigue, 1996, 18(3):171-177.
[13] ZHANG Y M, LIU Q, WEN B. Practical reliability-based design of gear pairs[J]. Mechanism and Machine Theory, 2003, 38:1363-1370.
[14] ZHANG G Y, WANG G Q, LI X F. Global optimization of reliability design for large ball mill gear transmission based on the kriging model and genetic algorithm[J]. Mechanism and Machine Theory, 2013, 69(11):321-336.
[15] NEJAD A R, GAO Z, MOAN T. On long-term fatigue damage and reliability analysis of gears under wind loads in offshore wind turbine drive trains[J]. International Journal of Fatigue, 2014, 61:116-128.
[16] LI Y F, VALLA S, ZIO E. Reliability assessment of generic geared wind turbines by GTST-MLD model and Monte Carlo simulation[J]. Renewable Energy, 2015, 83:222-233.
[17] GUERINE A, ELHAMI A, WALHA L. A perturbation approach for the dynamic analysis of one stage gear system with uncertain parameters[J]. Mechanism and Machine Theory, 2015, 92:113-126.
[18] HASL C, LIU H, OSTER P. Method for calculating the tooth root stress of plastic spur gears meshing with steel gears under consideration of deflection-induced load sharing[J]. Mechanism and Machine Theory, 2017, 111:152-163.
[19] CONCLI F, GORLA C. Numerical modeling of the power losses in geared transmissions:Windage, churning and cavitation simulations with a new integrated approach that drastically reduces the computational effort[J]. Tribology International, 2016, 103:58-68.
[20] WANG L M, SHAO Y M. Fault mode analysis and detection for gear tooth crack during its propagating process based on dynamic simulation method[J]. Engineering Failure Analysis, 2017, 71:166-178.
[21] GLODEZ S, ABERSEK B. A computational model for determination of service life of gears[J]. International Journal of Fatigue, 2002, 24(10):1013-1020.
[22] GLODEZ S, ABERSEK B. Evaluation of the service life of gears in regard to surface pitting[J]. Engineering Fracture Mechanics, 2004, 71(4):429-438.
[23] ABERSEK B, FLASKER J. Review of mathematical and experimental models for determination of service life of gears[J]. Engineering Fracture Mechanics, 2004, 71(4):439-453.
[24] BRITISH STANDARD. ISO 6336-3 Calculation of load capacity of spur and helical gears, part 3:Calculation of tooth bending strength[S]. 2006.
[25] BUCH A. Fatigue strength calculation[M]. 1988:169-170.
[26] AKATA E, ALTINBALIK M T, CAN Y. Three point load application in single tooth bending fatigue test for evaluation of gear blank manufacturing methods[J]. International Journal of Fatigue, 2004, 26(7):785-789.
[27] SAVARIA V, BRIDIER F, BOCHER P. Predicting the effects of material properties gradient and residual stresses on the bending fatigue strength of induction hardened aeronautical gears[J]. International Journal of Fatigue, 2016, 85:70-84.
[28] DENGO C. Experimental analysis of bending fatigue strength of plain and notched case-hardened gear steels[J]. International Journal of Fatigue, 2015, 80:145-161.
[29] CONRADO E, GORLA C, DAVOLI P. A comparison of bending fatigue strength of carburized and nitrided gears for industrial applications[J]. Engineering Failure Analysis, 2017, 78(8):41-54.
[30] 安宗文, 张宇, 刘波. 风电齿轮箱零件寿命分布函数的确定方法[J]. 电子科技大学学报, 2014, 43(6):950-954. AN Z W, ZHANG Y, LIU B. A method to determine the life distribution function of components for wind turbine gearbox[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(6):950-954(in Chinese).
[31] OLSSON E, OLANDER A, OBERG M. Fatigue of gears in the finite life regime-experiments and probabilistic modelling[J]. Engineering Failure Analysis, 2016, 62(1):276-286.
[32] FERNANDES P. Tooth bending fatigue failures in gears[J]. Engineering Failure Analysis, 1996, 3(3):219-225.
[33] MACKALDENER M, OLSSON M. Interior fatigue fracture of gear teeth[J]. Fatigue and Fracture of Engineering Materials and Structures, 2000, 23(4):283-292.
[34] MACKALDENER M, OLSSON M. Tooth interior fatigue fracture-computational and material aspects[J]. International Journal of Fatigue, 2001, 23(4):329-340.
[35] 林左鸣. 世界航空发动机手册[M]. 北京:航空工业出版社, 2012:240-270. LIN Z M. World aero engine manual[M]. Beijing:Aviation Industry Press, 2012:240-270(in Chinese).

[1] 谭秀峰, 谢里阳, 马洪义, 张娜, 罗义建. 基于对数正态分布的多部位疲劳结构的疲劳寿命预测方法[J]. 航空学报, 2017, 38(2): 220376-220382.
[2] 詹志新, 佟阳, 李彬恺, 胡伟平, 孟庆春. 考虑冲击缺陷的钛合金板的疲劳寿命预估[J]. 航空学报, 2016, 37(7): 2200-2207.
[3] 孟维迎, 谢里阳, 刘建中, 白鑫, 佟安时. 玻璃纤维增强铝锂合金层板单峰过载疲劳寿命性能对比研究[J]. 航空学报, 2016, 37(5): 1536-1543.
[4] 左杨杰, 曹增强, 杨柳, 臧传奇. 基于对称加载的均匀干涉配合铆接方法[J]. 航空学报, 2016, 37(3): 1049-1059.
[5] 张福泽. 寿命系数定寿的原理和方法[J]. 航空学报, 2016, 37(2): 404-410.
[6] 张腾, 何宇廷, 高潮, 侯波, 李昌范. 长期大气腐蚀对2A12-T4铝合金结构疲劳性能的影响[J]. 航空学报, 2015, 36(7): 2444-2456.
[7] 李奕寰, 曹增强, 张岐良, 冯东格. 铆模倾角对铆接质量的影响研究[J]. 航空学报, 2013, 34(2): 426-433.
[8] 陈勃;高玉魁;吴学仁;马少俊. 喷丸强化7475-T7351铝合金的小裂纹行为和寿命预测[J]. 航空学报, 2010, 31(3): 519-525.
[9] 胡家林;陈跃良;张玎;杨茂胜. 基于图像的腐蚀损伤及疲劳寿命研究[J]. 航空学报, 2010, 31(1): 131-135.
[10] 朱顺鹏;黄洪钟;谢里阳. 考虑小载荷强化的模糊疲劳寿命预测理论[J]. 航空学报, 2009, 30(6): 1048-1052.
[11] 廉伟;杨忠清;姚卫星. 由单向层压板偏轴拉伸S-N曲线估算面内剪切S-N曲线的方法[J]. 航空学报, 2009, 30(4): 637-642.
[12] 张淼;孟庆春;张行. 无扩口管路连接件疲劳寿命预估的损伤力学-有限元法[J]. 航空学报, 2009, 30(3): 435-443.
[13] 任克亮;吕国志. 三维广布裂纹疲劳扩展分析[J]. 航空学报, 2009, 30(3): 462-467.
[14] 郭伟国;史飞飞. 不同载荷方式下MDYB-3有机玻璃的变形与破坏行为[J]. 航空学报, 2008, 30(6): 1517-1525.
[15] 应中伟;冯蕴雯;薛小锋;冯元生. 改进的载荷循环分间隔法计算工程中MSD裂纹疲劳扩展问题[J]. 航空学报, 2008, 29(4): 898-902.
[1] Wan Min;Zhang Weihong;Tan Gang. Efficient Simulation Model of Material Removal in Peripheral Milling of Thin-walled Workpiece[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(5): 1247 -1251 .
[2] Rong Yisheng;Liu Weiqiang. Influence of Opposing Jet on Flow Field and Aerodynamic Heating at Nose of a Reentry Vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1552 -1557 .
[3] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 .
[4] Li Pan;Chen Renliang. Rotor Tip Vortex Model and Its Effect on Free-vortex Wake Analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1517 -1523 .
[5] TAN Hui-jun;GUO Rong-wei. Wind Tunnel Tests of Hypersonic Inlets for Ramjet Modules of  Ramjet scramjet Combined Engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 783 -790 .
[6] Lei Shihao;Jiang Zimao. GUIDELINES OF AIRCRAFT CABIN ENVIRONMENT ACOUSTICS DESIGN[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(6): 716 -719 .
[7] WANG Xiao-lu;ZHU Zi-qiang. Hybrid Optimization Design of High Performance Unmanned Aerial Vehicle Airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 839 -844 .
[8] Cao Xiaorui;Dong Chaoyang;Wang Qing;Chen Yu. Radome Slope Estimation Using Multiple Model Based on EKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1608 -1613 .
[9] Li Guomin;Liu Jun;Sha Jiangbo. Effect of Si and Ti on Microstructures and Mechanical Properties of Nb-6Hf-4Zr-2B Alloy at Room Temperature[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1688 -1694 .
[10] Liang Zhi-yong;Zhang Zhou-guang. Song Huang-Cheng. THE STATISTICAL ANALYSIS AND CALCULATING MODEL OF TENSILE PROPERTIES OF SINGLE AND HYBRID COMPOSITES[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(5): 330 -335 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   

版权所有 © 航空学报编辑部  
地址:北京市海淀区北四环中路辅路238号 邮政编码:100083
电话:010-82317058, 82318016   E-mail:hkxb@buaa.edu.cn
为了更好的浏览网站,建议使用IE或IE内核浏览器