Please wait a minute...
航空学报
  首页 | 关于本刊 | 编 委 会 | 最新录用 | 过刊浏览 | 期刊征订 | 下载中心 | 广告服务 | 博客 | 论坛 | 联系我们 | English
航空学报  2017, Vol. 38 Issue (8): 220885-220885    DOI: 10.7527/S1000-6893.2017.220885
  固体力学与飞行器总体设计 本期目录 | 过刊浏览 | 高级检索 |
三维全五向编织复合材料的切边效应
刘振国1, 黄祥1, 亚纪轩1, 雷冰1, 李小康1, 程新2
1. 北京航空航天大学 航空科学与工程学院, 北京 100083;
2. 西安航天复合材料研究所, 西安 710025
Cut-edge effect of three-dimensional full five-directional braided composites
LIU Zhenguo1, HUANG Xiang1, YA Jixuan1, LEI Bing1, LI Xiaokang1, CHENG Xin2
1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
2. Xi'an Aerospace Composites Research Institute, Xi'an 710025, China
下载:  PDF(4179KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

对切割与未切割的三维全五向(3DF5D)编织复合材料进行了纵向拉伸力学性能研究。首先分别对2种编织角下3种不同情况(未切割、沿厚度方向切边和沿宽度方向切边)的试件进行了力学性能实验,实验结果表明,沿着厚度方向切边使材料的刚度和强度分别下降了约10%和25%;沿着宽度方向切边使材料刚度和强度分别下降了约3%和18%;进一步通过有限元数值模拟对上述实验过程进行了仿真计算,得到了单胞的损伤演化过程、破坏机理以及应力-应变曲线。最后对实验结果和计算结果进行了对比,结果显示二者吻合良好。研究结果表明,三维全五向编织复合材料的编织角越大,拉伸刚度和强度会越小;试件尺寸越大,厚度方向和宽度方向切边的影响越小,并趋于定值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘振国
黄祥
亚纪轩
雷冰
李小康
程新
关键词:  三维全五向编织角切边效应实验研究力学性能;    
Abstract: 

Experimental research on cut-edge and uncut-edge effects of the mechanical performance of three-Dimensional Full five-Directional (3DF5D) braided composites is conducted. The specimens include two different braiding angles and three different cutting ways (uncut-edge, cut along the thickness direction and cut along the width direction). The mechanical performances of the specimens are obtained and studied to get the conclusion of the cut-edge influence. It is found that for the specimen cut along the thickness direction, there is approximately 10% reduction in average stiffness and 25% reduction in average strength, compared with specimens without cut-edge; while for the specimen cut along the width direction, the stiffness and strength decrease by 3% and 18%, respectively. The progressive damage and failure process of mesoscopic braided structures are investigated based on the repeated unit cells, and then the stress-strain curve of the specimen is obtained. Good agreement is obtained between the numerical and experimental results. Results show that the tensile stiffness and strength decrease with the increase of the braiding angle. The cut-edge effect on the performance of full 5-directional braided composites performance weakens and comes close to a constant with the increase of inner cells.

Key words:  3DF5D;    braiding angle;    cut-edge effect;    experimental study;    mechanical property;
收稿日期:  2016-10-25      修回日期:  2016-11-14           出版日期:  2017-08-15      发布日期:  2017-05-12      期的出版日期:  2017-08-15
ZTFLH:  V258+.3  
  TB332  
通讯作者:  刘振国,E-mail:liuzg@buaa.edu.cn    E-mail:  liuzg@buaa.edu.cn
引用本文:    
刘振国, 黄祥, 亚纪轩, 雷冰, 李小康, 程新. 三维全五向编织复合材料的切边效应[J]. 航空学报, 2017, 38(8): 220885-220885.
LIU Zhenguo, HUANG Xiang, YA Jixuan, LEI Bing, LI Xiaokang, CHENG Xin. Cut-edge effect of three-dimensional full five-directional braided composites. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(8): 220885-220885.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2017.220885  或          http://hkxb.buaa.edu.cn/CN/Y2017/V38/I8/220885

[1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese).
[2] 卢子兴, 杨振宇, 李仲平. 三维编织复合材料力学行为研究进展[J]. 复合材料学报, 2004, 21(2):1-7. LU Z X, YANG Z Y, LI Z P. Development of investgation into mechanical behavior of three dimensional braded composites[J]. Acta Materiae Compositae Sinica, 2004, 21(2):1-7(in Chinese).
[3] 吴德隆, 沈怀荣. 纺织结构复合材料的力学性能研究[J]. 力学进展, 2001, 31(4):583-591. WU D L, SHEN H R. The study of mechanical properties of textile structural composites[J]. Advances in Mechanics, 2001, 31(4):583-591(in Chinese).
[4] 刘振国. 三维全五向编织预制件的概念[J]. 材料工程, 2008(S1):305-312. LIU Z G. Concept of three-dimentional all five-directionnal braided preforms[J]. Journal of Materials Engineering, 2008(S1):305-312(in Chinese).
[5] LU D S, LU J L, CHEN L, et al. Finite element analysis of mechanical properties of 3D four-directional rectangular braided composites Part 1:Microgeometry and 3D finite element model[J]. Applied Composite Materials, 2010, 17(4):373-387.
[6] LU D S, FANG D N, LU Z X, et al. Finite element analysis of mechanical properties of 3D four-directional rectangular braided composites-Part 2:Validation of the 3D finite element model[J]. Applied Composite Materials, 2010, 17(4):389-404.
[7] ZHANG F, LIU Z G, WU Z, et al. A new scheme and microstructural model for 3D full 5-directional braided composites[J]. Chinese Journal of Aeronautics, 2010, 23(1):61-67.
[8] ZENG T, FANG D N, MA L, et al. Predicting the nonlinear response and failure of 3D braided composites[J]. Materials Letters, 2004, 58(26):3237-3241.
[9] 卢子兴, 刘振国. 三维编织复合材料强度的数值预报[J]. 北京航空航天大学学报, 2002, 28(5):563-565. LU Z X, LIU Z G. Numerical prediction of strength for 3D braided composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(5):563-565(in Chinese).
[10] FANG G D, LIANG J,WANG B L. Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension[J]. Composite Structures, 2009, 89(1):126-133.
[11] FANG G D, LIANG J, WANG Y, et al. The effect of yarn distortion on the mechanical properties of 3D four-directional braided composites[J]. Composites Part A:Applied Science and Manufacturing, 2009, 40(4):343-350.
[12] FANG G D, LIANG J, WANG B L, et al. Effect of interface properties on mechanical behavior of 3D four-directional braided composites with large braid angle subjected to uniaxial tension[J]. Applied Composite Materials, 2010, 18(5):449-465.
[13] MACANDER A B, CRANE R M, CAMPONESCHI E T. Fabrication and mechanical properties of multidimensionally (XD) braided composite materials[J]. ASTM STP, 1986, 873:422-445.
[14] 陈绍杰, 梁晶红. 三维编织复合材料结构的发展与应用[J]. 航空制造工程, 1994(4):33-35. CHEN S J, LIANG J H. Development and application of 3D braided composite materials[J]. Aviation Manufacture Engineering, 1994(4):33-35(in Chinese).
[15] LI J L, JIAO Y, SUN Y, et al. Experimental investigation of cut-edge effect on mechanical properties of three-dimensional braided composites[J]. Materials and Design, 2007, 28(9):2417-2424.
[16] 魏丽梅. 切边对三维纺织复合材料力学性能的影响[D]. 天津:天津工业大学, 2005:12-19. WEI L M, The effect of cut-edge on mechanical properties of three-dimensional braiding composites[D]. Tianjin:Tianjin Polytechnic University, 2005:12-19(in Chinese).
[17] ZHANG F, LIU Z G, WU Z, et al. A new scheme and microstructural model for 3D full 5-directional braided composites[J]. Chinese Journal of Aeronautics, 2010, 23(1):61-67.
[18] XIA Z, ZHANG Y, ELLYIN F, et al. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids and Structures, 2003, 40(8):1907-1921.
[19] XIA Z, ZHOU C, YONG Q, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. International Journal of Solids and Structures, 2006, 43(2):266-278.
[20] LI S. Boundary conditions for unit cells from periodic microstructures and their implications[J]. Composites Science and Technology, 2008, 68(9):1962-1974.
[21] HARPER L T, QIAN C, TURNER T A, et al. Representative volume elements for discontinuous carbon fibre composites-Part 1:Boundary conditions[J]. Composites Science and Technology, 2012, 72(2):225-234.
[22] HARPER L T, QIAN C, TURNER T A, et al. Representative volume elements for discontinuous carbon fibre composites-Part 2:Determining the critical size[J]. Composites Science and Technology, 2012, 72(2):204-210.
[23] LI S, WONGSTO A. Unit cells for micromechanical analyses of particle-reinforced composites[J]. Mechanics of Materials, 2004, 36(7):543-572.
[24] 张超, 许希武, 严雪. 三维五向及全五向编织复合材料的三单胞结构模型[J]. 南京航空航天大学学报,2013, 45(2):171-178. ZHANG C, XU X W, YAN X. Three unit-cell structure models of 3-D five-directional and full five-directional braided composite[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(2):171-178(in Chinese).
[25] 李艳华, 邬友英, 胡中永, 等.纤维增强塑料拉伸性能试验方法:GB/T 1447-2005[S]. 北京:中国标准出版社, 2005:1-11. LI Y H, WU Y Y, HU Z Y, et al. Fiber-reinforced plastic composites-Determination of tensile properties:GB/T 1447-2005[S]. Beijing:Standards Press of China, 2005:1-11(in Chinese).
[26] ZHENG X T, YE T Q. Microstructure analysis of 4-step three-dimensional braided composite[J]. Chinese Journal of Aeronautics, 2003, 16(3):142-150.
[27] LIU Z G, ZHANG H G, LU Z X, et al. Investigation on the thermal conductivity of 3-dimensional and 4-directional braided composites[J]. Chinese Journal of Aeronautics, 2007, 20(4):327-331.
[28] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2):329-334.

[1] 孙丹, 王猛飞, 艾延廷, 肖忠会, 孟继纲, 李云. 蜂窝密封泄漏特性理论与实验[J]. 航空学报, 2017, 38(4): 420512-420512.
[2] 卞红, 胡胜鹏, 宋晓国, 周志强, 冯吉才. 钎焊温度对Ti60/AgCu/ZrO2接头界面组织及性能的影响[J]. 航空学报, 2017, 38(12): 421402-421402.
[3] 刘振国, 林强, 亚纪轩, 胡龙, 王一博. 三维全五向编织耳片接头力学性能试验研究[J]. 航空学报, 2016, 37(7): 2225-2233.
[4] 朱自强, 吴宗成. 环量控制技术研究[J]. 航空学报, 2016, 37(2): 411-428.
[5] 田文平, 肖军, 李金焕, 徐挺, 刘婷. 空间光学结构用改性氰酸酯树脂及其复合材料性能[J]. 航空学报, 2016, 37(11): 3520-3527.
[6] 张啸尘, 谢里阳, 张瑞金, 孟维迎, 李铭, 胡杰鑫. 预循环应力对材料断裂力学性能“锻炼”效应的影响[J]. 航空学报, 2016, 37(10): 3074-3082.
[7] 刘博, 李勇, 肖军, 陈云雷, 肖健. 双酚A型环氧树脂紫外光固化工艺及其力学性能[J]. 航空学报, 2014, 35(5): 1424-1432.
[8] 刘倩, 孟庆坤, 赵新青, 胡亮. Ti-30Nb-1Mo-4Sn合金热机械处理过程中的相组成及力学性能演化[J]. 航空学报, 2014, 35(10): 2826-2833.
[9] 郑瑞晓, 张艺镡, 马朝利, 马凤梅, 肖文龙. 多重纳米结构轻质高强铝基复合材料的制备和组织性能[J]. 航空学报, 2014, 35(10): 2802-2812.
[10] 李阳, 肇研, 刘刚, 李书乡, 李龙, 李烨. 国产CCF300碳纤维及其NCF织物的性能[J]. 航空学报, 2014, 35(10): 2889-2900.
[11] 陈慈航, 明开胜, 毕晓昉. 热处理对FeCo-2V-0.5Cr软磁合金力学与磁学性能的影响[J]. 航空学报, 2014, 35(10): 2813-2818.
[12] 宋来收, 夏品奇. 采用压电叠层作动器的弹性梁振动主动控制实验研究[J]. 航空学报, 2014, 35(1): 171-178.
[13] 刘杰, 李海滨, 刘小瀛. 3D针刺C/SiC复合材料螺栓的低成本制备及力学性能[J]. 航空学报, 2013, 34(7): 1724-1730.
[14] 刘伯路, 刘子利, 刘希琴, 王怀涛, 王文静. Al含量对空心阴极等离子烧结Ti/Ni等原子比TiNiAl合金组织和力学性能的影响[J]. 航空学报, 2013, 34(3): 711-718.
[15] 杭超, 杨广, 李玉龙, 于起峰, 郭亚洲. 数字图像相关方法在焊缝材料力学性能测试中的应用[J]. 航空学报, 2013, 34(10): 2372-2382.
[1] Wan Min;Zhang Weihong;Tan Gang. Efficient Simulation Model of Material Removal in Peripheral Milling of Thin-walled Workpiece[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(5): 1247 -1251 .
[2] Rong Yisheng;Liu Weiqiang. Influence of Opposing Jet on Flow Field and Aerodynamic Heating at Nose of a Reentry Vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1552 -1557 .
[3] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 .
[4] Li Pan;Chen Renliang. Rotor Tip Vortex Model and Its Effect on Free-vortex Wake Analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1517 -1523 .
[5] TAN Hui-jun;GUO Rong-wei. Wind Tunnel Tests of Hypersonic Inlets for Ramjet Modules of  Ramjet scramjet Combined Engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 783 -790 .
[6] Lei Shihao;Jiang Zimao. GUIDELINES OF AIRCRAFT CABIN ENVIRONMENT ACOUSTICS DESIGN[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(6): 716 -719 .
[7] WANG Xiao-lu;ZHU Zi-qiang. Hybrid Optimization Design of High Performance Unmanned Aerial Vehicle Airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 839 -844 .
[8] Cao Xiaorui;Dong Chaoyang;Wang Qing;Chen Yu. Radome Slope Estimation Using Multiple Model Based on EKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1608 -1613 .
[9] Li Guomin;Liu Jun;Sha Jiangbo. Effect of Si and Ti on Microstructures and Mechanical Properties of Nb-6Hf-4Zr-2B Alloy at Room Temperature[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1688 -1694 .
[10] Liang Zhi-yong;Zhang Zhou-guang. Song Huang-Cheng. THE STATISTICAL ANALYSIS AND CALCULATING MODEL OF TENSILE PROPERTIES OF SINGLE AND HYBRID COMPOSITES[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(5): 330 -335 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   

版权所有 © 航空学报编辑部  
地址:北京市海淀区北四环中路辅路238号 邮政编码:100083
电话:010-82317058, 82318016   E-mail:hkxb@buaa.edu.cn
为了更好的浏览网站,建议使用IE或IE内核浏览器