首页 | 关于本刊 | 编 委 会 | 最新录用 | 过刊浏览 | 期刊征订 | 下载中心 | 广告服务 | 博客 | 论坛 | 联系我们 | English
 航空学报  2017, Vol. 38 Issue (8): 121089-121089    DOI: 10.7527/S1000-6893.2017.121089
 流体力学与飞行力学 本期目录 | 过刊浏览 | 高级检索 |

Best wind speed of ground air conditioning system based on PMV-PPD
LIN Jiaquan, LI Wanwan
Institute of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
 下载:  PDF(2718KB)  输出:  BibTeX | EndNote (RIS)

Abstract:

To address poor cabin comfort and energy efficiency caused by constant-velocity air supply of ground air conditioning, the cabin simulation model for Boeing737 is built by CFD method. The size of the simulation cabin is the same as that of Boeing737. Validity of the model is verified by laboratory experiments. Based on this model, the effects of different air supply velocity on the temperature field and wind velocity field are simulated. The values of wind speed and temperature are used to calculate the PMV and PPD at the sample points. The relationship between the ground air conditioning air supply velocity and the PPD is also fitted by the Gaussian fitting curve method. The best air supply velocity range is obtained to meet the thermal comfort requirement, providing basis for energy-saving of ground air conditioning.

Key words:  ground air conditioning;    thermal comfort;    numerical simulation;    Gaussian fitting;    best wind speed;

 ZTFLH: V245.3

 引用本文: 林家泉, 李弯弯. 基于PMV-PPD的地面空调最佳送风速度[J]. 航空学报, 2017, 38(8): 121089-121089. LIN Jiaquan, LI Wanwan. Best wind speed of ground air conditioning system based on PMV-PPD. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(8): 121089-121089. 链接本文: http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2017.121089  或          http://hkxb.buaa.edu.cn/CN/Y2017/V38/I8/121089
 [1] 崔沈夷. 飞机地面空调的选用及其节能意义[J]. 暖通空调, 2013, 43(7):30-36. CUI S Y. Selection of pre-conditioned air unit and energy saving significance[J]. Heating Ventilating & Air Conditioning, 2013, 43(7):30-36(in Chinese). [2] 林美娜, 赵薰, 林运龄. 某国际机场飞机地面空调机组的研制及其关键技术[J]. 制冷与空调, 2014, 14(10):75-78. LIN M N, ZHAO X, LIN Y L. Development of PCA for one international airport and its key technology[J]. Refrigeration and Air-conditioning, 2014, 14(10):75-78(in Chinese). [3] 朱明勇, 招启军, 王博. 基于CFD和混合配平算法的直升机旋翼地面效应模拟[J]. 航空学报, 2016, 37(8):2539-2551. ZHU M Y, ZHAO Q J, WANG B. Simulation of helicopter rotor in ground effect based on CFD method and hybrid trim algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2539-2551(in Chinese). [4] 陈琦, 郭勇颜, 谢昱飞, 等. PID控制器与CFD的耦合模拟技术研究及应用[J]. 航空学报, 2016, 37(8):2507-2516. CHEN Q, GUO Y Y, XIE Y F, et al. Research and application of coupled simulation techniques of PID controller and CFD[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2507-2516(in Chinese). [5] SEMPEY A, INARD C, GHIAUS C, et al. Fast simulation of temperature distribution in air conditioned rooms by using proper orthogonal decomposition[J]. Building and Environment, 2009, 44(2):280-289. [6] 赵树恩, 朱冰, 王荣, 等. 太阳辐射对汽车舱内热环境舒适性的影响研究与改善[J]. 流体机械, 2016, 44(7):70-76. ZHAO S E, ZHU B, WANG R, et al. Study of influence on the comfort of vehicle cabin thermal environment and improve cabin thermal environment comfort[J]. Fluid Machinery, 2016, 44(7):70-76(in Chinese). [7] MAZUMDAR S, CHEN Q Y. Response of contaminant detection sensors and sensor systems in a commercial aircraft cabin[C]//Proceedings of the 10th International IBPSA Conference(Building Simulation 2007), 2007:854-861. [8] DYGERT R K, DANG T Q. Experimental validation of local exhaust strategies for improved IAQ in aircraft cabins[J]. Building and Environment, 2012, 47(1):76-88. [9] FIŠER J, JÍCHA M. Impact of air distribution system on quality of ventilation in small aircraft cabin[J]. Building and Environment, 2013, 69(11):171-182. [10] 孙贺江, 吴尘, 安璐. 大型客机座舱混合送风形式的数值模拟[J]. 应用力学学报, 2013, 30(3):439-444. SUN H J, WU C, AN L. Numerical study of mixing ventilation systems in commercial aircraft cabin[J]. Chinese Journal of Applied Mechanics, 2013, 30(3):439-444(in Chinese). [11] YOU R Y, CHEN J, SHI Z, et al. Experimental and numerical study of airflow distribution in an aircraft cabin mock-up with a gasper on[J]. Journal of Building Performance Simulation, 2015, 9(5):555-566. [12] 刘俊杰, 李炳烨, 裴晶晶, 等. 不同季节飞机客舱环境的主客观实验研究[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(2):103-110. LIU J J, LI B Y, PEI J J, et al. Subjective and objective experimental study of cabin environment in different seasons[J]. Journal of Tianjin University (Science and Technology), 2015, 48(2):103-110(in Chinese). [13] ZHANG T F, CHEN Q Y. Novel air distribution systems for commercial aircraft cabins[J]. Building and Environment, 2007, 42(4):1675-1684. [14] 孙贺江, 李卫娟, 杨斌. 客机座舱新型个性座椅送风系统的数值仿真[J]. 天津大学学报(自然科学与工程技术版), 2013, 46(1):16-21. SUN H J, LI W J, YANG B. Numerical simulation of a novel personalized air distribution system for commercial aircraft cabins[J]. Journal of Tianjin University (Science and Technology), 2013, 46(1):16-21(in Chinese). [15] ZHANG T F, LI P H, WANG S G. A personal air distribution system with air terminals embedded in chair armrests on commercial airplanes[J]. Building and Environment, 2012, 47(1):89-99. [16] 孙智, 孙建红, 赵明, 等. 基于改进PMV指标的飞机驾驶舱热舒适性分析[J]. 航空学报, 2015, 36(3):819-826. SUN Z, SUN J H, ZHAO M, et al. Analysis of thermal comfort in aircraft cockpit based on the modified PMV index[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):819-826(in Chinese). [17] SARBU I, PACURAR C. Experimental and numerical research to assess indoor environment quality and schoolwork performance in university classrooms[J]. Building and Environment, 2015, 93(P2):141-154. [18] YANG L, YAN H Y, LAM J C. Thermal comfort and building energy consumption implications-A review[J]. Applied Energy, 2014, 115(4):164-173. [19] 孙贺江, 安璐, 冯壮波, 等. 客机驾驶舱流场CFD模拟与热舒适性分析[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(4):298-303. SUN H J, AN L, FENG Z B, et al. CFD simulation and thermal comfort analysis in an airliner cockpit[J]. Journal of Tianjin University (Science and Technology), 2014, 47(4):298-303(in Chinese). [20] CHEN Q Y. Comparison of different k-ε models for indoor air flow computations[J]. Numerical Heat Transfer, Part B:Fundamentals, 1995, 28(3):353-369. [21] 黄衍, 段然, 李炳烨, 等. 飞机座舱个性送风下的气态污染物传播规律实例研究[J]. 应用力学学报, 2015, 32(4):586-592. HUANG Y, DUAN R, LI B Y, et al. Simulation of contaminant transportation in aircraft cabin with partly gaspers on[J]. Chinese Journal of Applied Mechanics, 2015, 32(4):586-592(in Chinese). [22] American Society of Heating, Refrigerating, and Air-Conditioning Engineers. ANSI/ASHRAE Standard 161-2007 Air quality within commercial aircraft[S]. Atlanta:American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2007. [23] American Society of Heating, Refrigerating and air-conditioning engineers. ANSI/ASHRAE Standard 55-2004 Thermal environmental conditions for human occupancy[S]. Atlanta:American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2004.
 [1] 朱德华, 袁湘江, 杨武兵. 粗糙元诱导的高超声速转捩机理及应用[J]. 航空学报, 2018, 39(1): 121349-121349. [2] 李鑫郡, 张靖周, 谭晓茗. 存在横流时双压电风扇激励传热特性[J]. 航空学报, 2018, 39(1): 121424-121424. [3] 刘君, 董海波, 刘瑜. 化学非平衡流动解耦算法的回顾与新进展[J]. 航空学报, 2018, 39(1): 21090-021090. [4] 闫文辉, 薛然然. NACA4412翼型低速绕流数值计算中湍流模型对比[J]. 航空学报, 2017, 38(S1): 721515-721515. [5] 陈云永, 万科, 杨小贺, 丁建国. 大涵道比风扇/增压级叶尖间隙影响研究[J]. 航空学报, 2017, 38(9): 520951-520951. [6] 胡剑平, 任国哲, 易军, 刘振侠, 吕亚国, 赵静宇. 轴承腔内壁与油膜换热的数值模拟与试验[J]. 航空学报, 2017, 38(9): 521013-521013. [7] 祝培源, 宋立明, 李军, 丰镇平. 间隙位置和几何对端壁冷却性能的影响[J]. 航空学报, 2017, 38(9): 520942-520942. [8] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗. 三维等离子体MHD气动热环境数值模拟[J]. 航空学报, 2017, 38(8): 121030-121030. [9] 朱呈祥, 陈荣钱, 尤延铖. 低韦伯数非牛顿射流撞击破碎直接数值模拟[J]. 航空学报, 2017, 38(8): 120764-120764. [10] 李鑫郡, 张靖周, 谭晓茗. 单个压电风扇传热特性[J]. 航空学报, 2017, 38(7): 120982-120982. [11] 姜裕标, 王万波, 常智强, 黄勇. 定常吹气对无缝襟翼翼型地面效应影响的数值模拟[J]. 航空学报, 2017, 38(6): 120751-120751. [12] 杨晓军, 祝佳雄. 涡轮叶栅通道内颗粒物沉积过程的数值模拟[J]. 航空学报, 2017, 38(5): 120530-120530. [13] 周健, 欧平, 刘沛清, 郭昊. 沟槽面湍流减阻数值评估方法[J]. 航空学报, 2017, 38(4): 120263-120263. [14] 李映坤, 韩珺礼, 陈雄, 周长省, 巩伦昆. 基于多物理场耦合的双脉冲发动机点火过程数值模拟[J]. 航空学报, 2017, 38(4): 120409-120409. [15] 王志强, 沈锡钢, 胡骏. 反推状态下大涵道比涡扇发动机气动稳定性预测与评估[J]. 航空学报, 2017, 38(2): 120192-120202.
 [1] Wan Min;Zhang Weihong;Tan Gang. Efficient Simulation Model of Material Removal in Peripheral Milling of Thin-walled Workpiece[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(5): 1247 -1251 . [2] Rong Yisheng;Liu Weiqiang. Influence of Opposing Jet on Flow Field and Aerodynamic Heating at Nose of a Reentry Vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1552 -1557 . [3] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 . [4] Li Pan;Chen Renliang. Rotor Tip Vortex Model and Its Effect on Free-vortex Wake Analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1517 -1523 . [5] TAN Hui-jun;GUO Rong-wei. Wind Tunnel Tests of Hypersonic Inlets for Ramjet Modules of  Ramjet scramjet Combined Engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 783 -790 . [6] Lei Shihao;Jiang Zimao. GUIDELINES OF AIRCRAFT CABIN ENVIRONMENT ACOUSTICS DESIGN[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(6): 716 -719 . [7] WANG Xiao-lu;ZHU Zi-qiang. Hybrid Optimization Design of High Performance Unmanned Aerial Vehicle Airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 839 -844 . [8] Cao Xiaorui;Dong Chaoyang;Wang Qing;Chen Yu. Radome Slope Estimation Using Multiple Model Based on EKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1608 -1613 . [9] Li Guomin;Liu Jun;Sha Jiangbo. Effect of Si and Ti on Microstructures and Mechanical Properties of Nb-6Hf-4Zr-2B Alloy at Room Temperature[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1688 -1694 . [10] Liang Zhi-yong;Zhang Zhou-guang. Song Huang-Cheng. THE STATISTICAL ANALYSIS AND CALCULATING MODEL OF TENSILE PROPERTIES OF SINGLE AND HYBRID COMPOSITES[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(5): 330 -335 .
Viewed
Full text

Abstract

Cited

Shared
Discussed
﻿
 版权所有 © 航空学报编辑部   地址：北京市海淀区北四环中路辅路238号　邮政编码：100083 电话：010-82317058, 82318016   E-mail：hkxb@buaa.edu.cn 为了更好的浏览网站，建议使用IE或IE内核浏览器