Please wait a minute...
航空学报
  首页 | 关于本刊 | 编 委 会 | 最新录用 | 过刊浏览 | 期刊征订 | 下载中心 | 广告服务 | 博客 | 论坛 | 联系我们 | English
航空学报  2017, Vol. 38 Issue (8): 421150-421150    DOI: 10.7527/S1000-6893.2017.421150
  材料工程与机械制造 本期目录 | 过刊浏览 | 高级检索 |
薄型中空电极振动电解切割TB6钛合金
姚俊1, 王峰2, 聂玉军3, 陈志同1
1. 北京航空航天大学 机械工程及自动化学院, 北京 100083;
2. 南京航空航天大学 机电学院, 南京 210016;
3. 沈阳航空航天大学 机电工程学院, 沈阳 110136
Electrochemical cutting of titanium alloy TB6 with vibration by thin hollow cathode
YAO Jun1, WANG Feng2, NIE Yujun3, CHEN Zhitong1
1. School of Mechanical Engineering & Automation, Beihang University, Beijing 100083, China;
2. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
3. School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China
下载:  PDF(3869KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

TB6钛合金由于具有优越的性能,广泛地用于航空航天领域。然而从大余量的TB6钛合金锻铸件毛坯加工成复杂结构的零件,其加工效率低,刀具和机床成本高,造成了极大的浪费。为解决这一问题,提出了一种利用薄型中空电极进行快速大余量去除的电解加工(ECM)方法,即将零件与多余材料切割分离,有望较大程度提高加工效率,降低加工成本。为改善电解加工流场特性,提高加工精度,对电极施加振动,并对薄型中空电极的振动切割进行了建模分析和试验研究。试验结果表明,合适的振动幅值和频率(A=0.05 mm, f=50 Hz)可以使得各处电解液电导率趋于一致,从而提高加工的精度、稳定性和效率。复杂结构件的成功切割证明了薄型中空电极振动电解切割加工技术具有一定的适用性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚俊
王峰
聂玉军
陈志同
关键词:  薄型中空电极电解切割振动加工难加工材料TB6钛合金;    
Abstract: 

Titanium alloy TB6 has been widely used in the field of aerospace because of its excellent properties. However, the fabricating of complex structure components from titanium alloy TB6 forging-casting fittings with large cutting allowance is inefficient and costly in cutting tool and machine tool to cause great waste. In order to solve this problem, one type of Electrochemical Machining (ECM) for rapidly removing large allowance by thin hollow cathode is proposed. The spare material is cut and separated from the blank, so as to improve machining efficiency and reduce the cost. In order to improve the flow field characteristics of ECM and machining accuracy, the vibration of electrode is applied, the model for ECM with vibration is built, and experimental research is carried out. The experimental results show that the conductivity of electrolyte in the whole area tends to be consistent with the appropriate vibration amplitude and frequency (A=0.05 mm, f=50 Hz), so that the machining accuracy, stability and efficiency can be improved. The applicability of electrochemical cutting with vibration by thin hollow cathode is proved by successful cutting of complex structure components.

Key words:  thin hollow cathode;    electrochemical cutting;    vibration machining;    difficult-to-machine material;    titanium alloy TB6;
收稿日期:  2017-01-18      修回日期:  2017-02-15           出版日期:  2017-08-15      发布日期:  2017-04-28      期的出版日期:  2017-08-15
ZTFLH:  V261.5+1  
基金资助: 

国家科技重大专项(2015ZX04001201);中航工业产学研专项(cxy2013BH04)

通讯作者:  陈志同,E-mail:ztchen@buaa.edu.cn    E-mail:  ztchen@buaa.edu.cn
引用本文:    
姚俊, 王峰, 聂玉军, 陈志同. 薄型中空电极振动电解切割TB6钛合金[J]. 航空学报, 2017, 38(8): 421150-421150.
YAO Jun, WANG Feng, NIE Yujun, CHEN Zhitong. Electrochemical cutting of titanium alloy TB6 with vibration by thin hollow cathode. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(8): 421150-421150.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2017.421150  或          http://hkxb.buaa.edu.cn/CN/Y2017/V38/I8/421150

[1] 金和喜, 魏克湘, 李建明, 等. 航空用钛合金研究进展[J]. 中国有色金属学报, 2004, 25(2):280-290. JIN H X, WEI K X, LI J M, et al. Research development of titanium alloy in aerospace industry[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(2):280-290(in Chinese).
[2] 姚倡锋, 武导侠, 靳淇超, 等. TB6钛合金高速铣削表面粗糙度与表面形貌研究[J]. 航空制造技术, 2012(21):90-97. YAO C F, WU D X, JIN Q C, et al. Research on surface roughness and surface topography of high-speed milling TB6 titanium alloy[J]. Aviation Manufacturing Technology, 2012(21):90-97(in Chinese).
[3] 周子同, 陈志同, 蒋理科, 等. 钛合金TB6铣削加工硬化实验[J]. 北京航空航天大学学报, 2014, 40(1):135-140. ZHOU Z T, CHEN Z T, JIANG L K, et al. Experiment on work hardening of milling TB6[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(1):135-140(in Chinese).
[4] 陈燕, 杨树宝, 傅玉灿, 等. 钛合金TC4高速切削刀具磨损的有限元仿真[J]. 航空学报, 2013, 34(9):2230-2240. CHEN Y, YANG S B, FU Y C, et al. FEM estimation of tool wear in high speed cutting of Ti6Al4V alloy[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2230-2240(in Chinese).
[5] ZHU D, ZHU D, XU Z Y, et al. Trajectory control strategy of cathodes in blisk electrochemical machining[J]. Chinese Journal of Aeronautics, 2013, 26(4):1064-1070.
[6] KLOCKE F, KLINK A, VESELOVAC D, et al. Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes[J]. CIRP Annals-Manufacturing Technology, 2014, 63:703-726.
[7] 赵建社, 王福元, 徐家文.整体叶轮自由曲面叶片精密电解加工工艺研究[J]. 航空学报, 2013, 34(12):2841-2848. ZHAO J S, WANG F Y,XU J W. Research on electrochemical machining process for fine finishing of integral impeller with free form surface blade[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2841-2848(in Chinese).
[8] EBEID S J, HEWIDY M S, EI-TAWEEL T A, et al. Towards higher accuracy for ECM hybridized with low-frequency vibrations using the response surface methodology[J]. Journal of Materials Processing Technology, 2004, 149:432-438
[9] HEWIDY M S, EBEID S J, EI-TAWEEL T A, et al. Modelling the performance of ECM assisted by low frequency vibrations[J]. Journal of Materials Processing Technology, 2007, 189:466-472.
[10] GHOSHAL B, BHATTACHARYYA B. Vibration assisted electrochemical micromachining of high aspect ratio micro features[J]. Precision Engineering, 2015, 42:231-241.
[11] BHATTACHARYYA B, GHOSHAL B. Influence of vibration on micro-tool fabrication by electrochemical machining[J]. International Journal of Machine Tools & Manufacture, 2013, 64:49-59.
[12] FÖRSTER R, SCHOTH A, MENZ W. Micro-ECM for production of microsystems with a high aspect ratio[J]. Microsystem Technologies, 2005, 11(4-5):246-249.
[13] FANG X L, QU N S. Effects of pulsating electrolyte flow in electrochemical machining[J]. Journal of Materials Processing Technology, 2014, 214(1):36-43.
[14] QU N S, FANG X L. Enhancement of surface roughness in electrochemical machining of Ti6Al4V by pulsating electrolyte[J]. International Journal of Advanced Manufacturing, 2013, 69(9-12):2703-2709.
[15] 王峰, 赵建社, 干为民. 阴极复合进给窄缝电解加工精度的试验研究[J]. 华南理工大学学报, 2016, 44(3):16-22. WANG F, ZHAO J S, GAN W M. Experimental investigation into accuracy of narrow-slit electrochemical machining with cathodic compound feeding[J]. Journal of South China University of Technology, 2016, 44(3):16-22(in Chinese).
[16] 马晓宇, 李勇. 间歇回退对微细电解加工的影响分析及实验研究[J]. 航天制造技术, 2009(6):6-11. MA X Y, LI Y. Analysis and experimental study of micro ECM with intermittent retraction of electrode[J]. Aerospace Manufacturing Technology, 2009(6):6-11(in Chinese).
[17] XU K, ZENG Y B. Vibration assisted wire electrochemical micro machining of array micro tools[J]. Precision Engineering, 2017, 47:487-497.
[18] ZENG Y B, YU Q. Enhancement of mass transport in micro wire electrochemical machining[J]. CIRP Annals-Manufacturing Technology, 2012, 61:195-198.
[19] KLOCKE F, KLINK A, VESELOVAC D, et al. Turbo machinery component manufacture by application of electrochemical. Electro-physical and photonic processes[J]. CIRP Annals-Manufacturing Technology, 2014, 63:703-726.
[20] QU N S, FANG X L, LI W, et al. Wire electrochemical machining with axial electrolyte flushing for titanium alloy[J]. Chinese Journal of Aeronautics, 2013, 26(1):224-229.
[21] DHOBE S D, DOLOI B, BHATTACHARYYA B. Surface characteristics of ECMed titanium work samples for biomedical applications[J]. International Journal of Advanced Manufacturing Technology, 2011, 55(1-4):177-188.
[22] CHEN X Z, XU Z Y. Experimental research on electrochemical machining of titanium alloy Ti60 for a blisk[J]. Chinese Journal of Aeronautics, 2016, 29(1):274-282.

[1] 张幼桢;潘良贤;刘肇发;吴殿宗. 难加工材料切削状态的识别——模式识别技术的应用[J]. 航空学报, 1983, 4(1): 87-94.
[1] Wan Min;Zhang Weihong;Tan Gang. Efficient Simulation Model of Material Removal in Peripheral Milling of Thin-walled Workpiece[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(5): 1247 -1251 .
[2] Rong Yisheng;Liu Weiqiang. Influence of Opposing Jet on Flow Field and Aerodynamic Heating at Nose of a Reentry Vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1552 -1557 .
[3] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 .
[4] Li Pan;Chen Renliang. Rotor Tip Vortex Model and Its Effect on Free-vortex Wake Analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1517 -1523 .
[5] TAN Hui-jun;GUO Rong-wei. Wind Tunnel Tests of Hypersonic Inlets for Ramjet Modules of  Ramjet scramjet Combined Engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 783 -790 .
[6] Lei Shihao;Jiang Zimao. GUIDELINES OF AIRCRAFT CABIN ENVIRONMENT ACOUSTICS DESIGN[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(6): 716 -719 .
[7] WANG Xiao-lu;ZHU Zi-qiang. Hybrid Optimization Design of High Performance Unmanned Aerial Vehicle Airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 839 -844 .
[8] Cao Xiaorui;Dong Chaoyang;Wang Qing;Chen Yu. Radome Slope Estimation Using Multiple Model Based on EKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1608 -1613 .
[9] Li Guomin;Liu Jun;Sha Jiangbo. Effect of Si and Ti on Microstructures and Mechanical Properties of Nb-6Hf-4Zr-2B Alloy at Room Temperature[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1688 -1694 .
[10] Liang Zhi-yong;Zhang Zhou-guang. Song Huang-Cheng. THE STATISTICAL ANALYSIS AND CALCULATING MODEL OF TENSILE PROPERTIES OF SINGLE AND HYBRID COMPOSITES[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(5): 330 -335 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   

版权所有 © 航空学报编辑部  
地址:北京市海淀区北四环中路辅路238号 邮政编码:100083
电话:010-82317058, 82318016   E-mail:hkxb@buaa.edu.cn
为了更好的浏览网站,建议使用IE或IE内核浏览器