Please wait a minute...
航空学报
  首页 | 关于本刊 | 编 委 会 | 最新录用 | 过刊浏览 | 期刊征订 | 下载中心 | 广告服务 | 博客 | 论坛 | 联系我们 | English
航空学报  2017, Vol. 38 Issue (8): 220868-220868    DOI: 10.7527/S1000-6893.2017.220868
  固体力学与飞行器总体设计 本期目录 | 过刊浏览 | 高级检索 |
基于聚类状态主控边界点的单调多态关联系统可靠性分析
张永进1, 孙有朝2, 张燕军3
1. 安徽工业大学 数理科学与工程学院, 马鞍山 243002;
2. 南京航空航天大学 民航学院, 南京 211106;
3. 扬州大学 机械工程学院, 扬州 225127
Reliability analysis for multi-state coherent system with monotonic components based on pivotal boundary points of clustering states
ZHANG Yongjin1, SUN Youchao2, ZHANG Yanjun3
1. School of Mathematics and Physics, Anhui University of Technology, Maanshan 243002, China;
2. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
3. College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
下载:  PDF(3600KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

鉴于组成系统单元的多状态单调关联性特征,将多元离散函数理论引入描述系统状态结构函数,发展了控制状态等价类主导状态向量的状态等价类主控边界点的逻辑方法,推导了多态单调关联系统的状态结构函数、可靠性和期望状态表达式;面向顾客的需求偏好,将负效用函数嵌入系统平均性能效用模型;鉴于元件状态引起的计算复杂性,提出了集合运算的德摩根律法和新型的框图式算法,简化了系统可靠度的表达式。结合某型航空发动机的简化演算,验证了主导等价类向量方法和框图算法的合理性与有效性,为工程系统的可靠性设计和可靠性管理提供理论依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张永进
孙有朝
张燕军
关键词:  主控边界点离散函数多状态关联系统单调性可靠性;    
Abstract: 

Considering the monotone and coherence of the multi-state system, the multiple discrete function theory is introduced to describe the structure function of system state. The logic approaches for the equivalence class of the component state which control the state vector of system are proposed, and the expressions for the state structure function, reliability and expected states are derived for the multi-state coherent system. To avoid the complexity of computation caused by the number of the state, the Demogen law and the new block diagram algorithm are developed to simplify the expression for the system reliability. An illustrative example of a certain type of aero engine verifies the effectiveness of the logic vector measure controlling the state equivalence class and the block diagram algorithm. It provides theoretical basis for reliability design and reliability management of system engineering.

Key words:  pivotal boundary point;    discrete function;    multi-state coherent system;    monotonicity;    reliability;
收稿日期:  2016-10-19      修回日期:  2017-02-26           出版日期:  2017-08-15      发布日期:  2017-04-19      期的出版日期:  2017-08-15
ZTFLH:  V231  
  TB114.3  
  TH112  
基金资助: 

国家自然科学基金(U1333119,60979019,60572171,51605424,71601002);中国民航局科技基金(MHRD201123,MHRD200908,MHRD0722);江苏省自然科学基金(BK20150455)

通讯作者:  孙有朝,E-mail:sunyc@nuaa.edu.cn    E-mail:  sunyc@nuaa.edu.cn
引用本文:    
张永进, 孙有朝, 张燕军. 基于聚类状态主控边界点的单调多态关联系统可靠性分析[J]. 航空学报, 2017, 38(8): 220868-220868.
ZHANG Yongjin, SUN Youchao, ZHANG Yanjun. Reliability analysis for multi-state coherent system with monotonic components based on pivotal boundary points of clustering states. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(8): 220868-220868.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2017.220868  或          http://hkxb.buaa.edu.cn/CN/Y2017/V38/I8/220868

[1] CHAHKANDI M, RUGGERI F, SUAREZ L A. A generalized signature of repairable coherent systems[J]. IEEE Transactions on Reliability, 2016, 65(1):434-445.
[2] BARLOW R E, WU A S. Coherent systems with multi-state components[J]. Mathematics of Operations Research, 1978, 3(4):275-281.
[3] EI-NEWEIHI E. Multistate coherent systems[J]. Journal of Applied Probability, 1978, 15(4):675-688.
[4] NATRING B. Two suggestions of how to define a multistate coherent system[J]. Advances in Applied Probability, 1982, 14(2):434-455.
[5] HUANG H Z, TONG X, ZUO M J. Posbist fault tree analysis of coherent systems[J]. Reliability Engineering & System Safety, 2004, 84(2):141-148.
[6] AVEN T. On performance measures for multistate monotone systems[J]. Reliability Engineering & System Safety, 1993, 41(3):259-266.
[7] BOEDIGHEIMER R A, KAPUR K C. Customer-driven reliability models for multistate coherent systems[J]. IEEE Transactions on Reliability, 1994, 43(1):46-50.
[8] LUO T, TRIVEDI K S. An improved algorithm for coherent system reliability[J]. IEEE Transactions on Reliability, 1998, 47(1):73-78.
[9] BOUTSIKAS M V, KOUTRAS M V. Generalized reliability bounds for coherent structures[J]. Journal of Applied Probability, 2000, 37(3):778-794.
[10] ESARY J D, PROSCHAN F. A reliability bound for systems of maintained, interdependent components[J]. Journal of the American Statistical Association, 1970, 65(329):329-338.
[11] HSIEH Y C. New reliability bounds for coherent systems[J]. Journal of the Operational Research Society, 2003, 54(9):995-1001.
[12] LI J A, WU Y, LAI K K, et al. Reliability estimation of multi-state components and coherent systems[J]. Reliability Engineering & System Safety, 2005, 88(1):93-98.
[13] XUE J, YANG K. Dynamic reliability analysis of coherent multistate systems[J]. IEEE Transactions on Reliability, 1995, 44(4):683-688.
[14] CUI L, LI H. Analytical method for reliability and MTTF assessment of coherent systems with dependent components[J]. Reliability Engineering & System Safety, 2007, 92(3):300-307.
[15] LIU Y W, KAPUR K C. Reliability measures for dynamic multistate nonrepairable systems and their applications to system performance evaluation[J]. ⅡE Transactions, 2006, 38(6):511-520.
[16] NATVIG B. On the deterioration of non-repairable multistate strongly coherent systems[J]. Journal of Applied Probability, 2014, 51(51):69-81.
[17] KUNDU P, HAZRA N K, NANDA A K. Reliability study of a coherent system with single general standby component[J]. Statistics & Probability Letters, 2016, 110:25-33.
[18] ERYILMAZ S. A new look at dynamic behavior of binary coherent system from a state-level perspective[J]. Annals of Operations Research, 2014, 212(1):115-125.
[19] ZHANG X, WILSON A. System reliability and component importance under dependence:A Copula approach[J]. Technometrics, 2016:1-28.
[20] POLPO A, SINHA D, DE B. Nonparametric Bayesian estimation of reliabilities in a class of coherent systems[J]. IEEE Transactions on Reliability, 2013, 62(2):455-465.
[21] KUNDU P, HAZRA N K, NANDA A K. Reliability study of a coherent system with single general standby component[J]. Statistics & Probability Letters, 2016, 110:25-33.
[22] FRANKO C, OZHKUT M, KAN C. Reliability of coherent systems with a single cold standby component[J]. Journal of Computational & Applied Mathematics, 2015, 281(C):230-238.
[23] GRIFFITH W S. Multistate reliability models[J]. Journal of Applied Probability, 1980, 17(3):735-744.
[24] BUTLER D A. Bounding the reliability of multi-state systems[J]. Operations Research, 1982, 30(3):530-544.
[25] BLOCK H W, SAVITS T H. A decomposition for multistate monotone systems[J]. Journal of Applied Probability, 1982, 19(2):391-402.
[26] HUDSON J C, KAPUR K C. Reliability bounds for multi-state systems with multistate components[J]. Operations Research, 1985, 33(1):153-160.
[27] LISNIANSKI A, LEVITIN G. Multi-state system reliability assessment, optimization, application[M]. Singapore:World Scientific, 2003:89-153.
[28] LIU Y W, KAPUR K C. Customer's cumulative experience measures for reliability of non-repairable aging multistate systems[J]. Quality Technology and Quantitative Management, 2007, 4(2):225-234.
[29] MAGANA S, ALBERTO C. Dynamic reliability based performance measures for multi-state systems[D]. Seattle, WA:University of Washington, 2010:116-130.
[30] LIU Y W. Multi-state system reliability:Models, dynamic measures and applications[D]. Seattle, WA:Univesity of Washington, 2006:115-121.
[31] XUE J, YANG K. Dynamic reliability analysis of coherent multistate systems[J]. IEEE Transactions on Reliability, 1995, 44(4):683-688.
[32] 刘长富, 邓明. 航空发动机结构分析[M]. 西安:西北工业大学出版社, 2006:72-112. LIU C F, DENG M. Structural analysis of aeroengine[M]. Xi'an:Northwestern Polytechnical University Press, 2006:72-112(in Chinese).

[1] 钱超, 张子剑, 李大伟. 平台式惯性导航系统在线可靠性评估技术[J]. 航空学报, 2017, 38(9): 321259-321259.
[2] 王涛, 蔡金燕, 孟亚峰, 刘晓攀, 潘刚. 胚胎电子细胞阵列中空闲细胞的配置[J]. 航空学报, 2017, 38(4): 320266-320266.
[3] 谭秀峰, 谢里阳, 马洪义, 张娜, 罗义建. 基于对数正态分布的多部位疲劳结构的疲劳寿命预测方法[J]. 航空学报, 2017, 38(2): 220376-220382.
[4] 李军亮, 滕克难, 夏菲. 一种复杂可修系统的可用度计算方法[J]. 航空学报, 2017, 38(12): 221169-221169.
[5] 周凌, 李艳辉. 基于截尾概率-非概率混合模型的可靠性优化算法[J]. 航空学报, 2017, 38(1): 220216-220216.
[6] 柳诗雨, 吕震宙, 员婉莹, 肖思男. 小失效概率情况下的全局可靠性灵敏度分析的高效方法[J]. 航空学报, 2016, 37(9): 2766-2774.
[7] 沈文静, 彭志军, 李彬, 叶彬. 某型飞机前起落架收放载荷当量化研究[J]. 航空学报, 2016, 37(7): 2218-2224.
[8] 党小宇, 黄准, 朱鲁军, 虞湘宾, 陈小敏. 拉普拉斯白噪声下的分组Turbo码[J]. 航空学报, 2016, 37(11): 3494-3501.
[9] 张砦, 王友仁. 应用设计过程的胚胎硬件细胞单元粒度优化方法[J]. 航空学报, 2016, 37(11): 3502-3511.
[10] 佟操, 孙志礼, 杨丽, 孙安邦. 一种基于Kriging和Monte Carlo的主动学习可靠度算法[J]. 航空学报, 2015, 36(9): 2992-3001.
[11] 谢里阳, 任俊刚, 吴宁祥, 钱文学. 复杂结构部件概率疲劳寿命预测方法与模型[J]. 航空学报, 2015, 36(8): 2688-2695.
[12] 刘育强, 谭春林, 赵阳. 时变磨损间隙对机构可靠性的动态影响[J]. 航空学报, 2015, 36(5): 1539-1547.
[13] 王浩伟, 徐廷学, 王伟亚. 基于退化模型的失效机理一致性检验方法[J]. 航空学报, 2015, 36(3): 889-897.
[14] 朱海燕, 袁修开. 基于灵敏度的可靠性优化解耦方法[J]. 航空学报, 2015, 36(3): 881-888.
[15] 江秀红, 段富海, 李玉峰. 复杂冗余系统的预测维修决策[J]. 航空学报, 2015, 36(11): 3666-3677.
[1] Wan Min;Zhang Weihong;Tan Gang. Efficient Simulation Model of Material Removal in Peripheral Milling of Thin-walled Workpiece[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(5): 1247 -1251 .
[2] Rong Yisheng;Liu Weiqiang. Influence of Opposing Jet on Flow Field and Aerodynamic Heating at Nose of a Reentry Vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1552 -1557 .
[3] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 .
[4] Li Pan;Chen Renliang. Rotor Tip Vortex Model and Its Effect on Free-vortex Wake Analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1517 -1523 .
[5] TAN Hui-jun;GUO Rong-wei. Wind Tunnel Tests of Hypersonic Inlets for Ramjet Modules of  Ramjet scramjet Combined Engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 783 -790 .
[6] Lei Shihao;Jiang Zimao. GUIDELINES OF AIRCRAFT CABIN ENVIRONMENT ACOUSTICS DESIGN[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(6): 716 -719 .
[7] WANG Xiao-lu;ZHU Zi-qiang. Hybrid Optimization Design of High Performance Unmanned Aerial Vehicle Airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 839 -844 .
[8] Cao Xiaorui;Dong Chaoyang;Wang Qing;Chen Yu. Radome Slope Estimation Using Multiple Model Based on EKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1608 -1613 .
[9] Li Guomin;Liu Jun;Sha Jiangbo. Effect of Si and Ti on Microstructures and Mechanical Properties of Nb-6Hf-4Zr-2B Alloy at Room Temperature[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1688 -1694 .
[10] Liang Zhi-yong;Zhang Zhou-guang. Song Huang-Cheng. THE STATISTICAL ANALYSIS AND CALCULATING MODEL OF TENSILE PROPERTIES OF SINGLE AND HYBRID COMPOSITES[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(5): 330 -335 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   

版权所有 © 航空学报编辑部  
地址:北京市海淀区北四环中路辅路238号 邮政编码:100083
电话:010-82317058, 82318016   E-mail:hkxb@buaa.edu.cn
为了更好的浏览网站,建议使用IE或IE内核浏览器