Please wait a minute...
航空学报
  首页 | 关于本刊 | 编 委 会 | 最新录用 | 过刊浏览 | 期刊征订 | 下载中心 | 广告服务 | 博客 | 论坛 | 联系我们 | English
航空学报  2017, Vol. 38 Issue (8): 220918-220918    DOI: 10.7527/S1000-6893.2017.220918
  固体力学与飞行器总体设计 本期目录 | 过刊浏览 | 高级检索 |
考虑横法向热应变的Reddy型功能梯度梁理论
许琦, 吴振
沈阳航空航天大学 辽宁省飞行器复合材料结构分析与仿真重点实验室, 沈阳 110136
A Reddy-type theory of functionally graded beam considering transverse normal thermal strain
XU Qi, WU Zhen
Liaoning Province Key Laboratory on Composite Structural Analysis and Simulation of Aerocraft, Shenyang Aerospace University, Shenyang 110136, China
下载:  PDF(2741KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

Reddy型高阶理论已被广泛用于功能梯度材料(FGM)结构分析,然而此理论忽略了横法向应变,难于准确分析功能梯度梁的热力行为。为提高Reddy理论分析热力响应的精度,提出了一种考虑横法向热应变的三参数Reddy型高阶功能梯度梁理论。此模型考虑了横法向热应变,但不增加额外位移变量。应用构建的模型分析了功能梯度梁的热力响应,并研究了不同体积分数对面内应力和位移的影响。数值结果表明,所提出的模型能准确分析功能梯度梁的热力响应,而忽略横法向应变的模型计算结果精度较低。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许琦
吴振
关键词:  Reddy型高阶理论功能梯度梁横法向热应变解析解热力分析;    
Abstract: 

The Reddy-type higher-order theory has been widely used for analysis of Functionally Graded Material (FGM) structures. However, the theory neglects transverse normal strain, and will thus encounter difficulties in analysis of the thermomechanical behaviors of the functionally graded beam. To improve the performance of Reddy's theory, a Reddy-type higher-order theory considering transverse normal thermal strain with three displacement parameters is proposed. Although transverse normal thermal strain is taken into account, the number of displacement parameters is not increased in the theory. The model proposed is used to investigate thermomechanical response of the functionally graded beam, and also the effect of volume fraction on stress and displacement of functionally graded beam. Numerical results showed that the proposed model can calculate accurately the thermomechanical response of the functionally graded beam, and can improve the calculation accuracy of the models for transverse normal thermal strain.

Key words:  Reddy-type higher-order theory;    functionally graded beam;    transverse normal thermal strain;    analytical solution;    thermomechanical analysis;
收稿日期:  2016-11-07      修回日期:  2017-02-16           出版日期:  2017-08-15      发布日期:  2017-04-10      期的出版日期:  2017-08-15
ZTFLH:  V257  
基金资助: 

国家自然科学基金(11272217,11402152)

通讯作者:  吴振,E-mail:wuzhenhk@163.com    E-mail:  wuzhenhk@163.com
引用本文:    
许琦, 吴振. 考虑横法向热应变的Reddy型功能梯度梁理论[J]. 航空学报, 2017, 38(8): 220918-220918.
XU Qi, WU Zhen. A Reddy-type theory of functionally graded beam considering transverse normal thermal strain. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(8): 220918-220918.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2017.220918  或          http://hkxb.buaa.edu.cn/CN/Y2017/V38/I8/220918

[1] HOUARI M S A, TOUNSI A, BÉG O A. Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory[J]. International Journal of Mechanical Sciences, 2013, 76:102-111.
[2] PRAVEEN G N, REDDY J N. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates[J]. International Journal of Solids and Structures, 1998, 35(33):4457-4476.
[3] WU L H. Thermal buckling of a simply supported moderately thick rectangular FGM plate[J]. Composite Structures, 2004, 64(2):211-218.
[4] MENDONCA P D T R, DE BARCELLOS C S D, TORRES D A F. Robust Ck/C0 generalized FEM approximations for higher-order conformity requirements:Application to Reddy's HSDT model for anisotropic laminated plates[J]. Composite Structures, 2013, 96:332-345.
[5] JONNALAGADDA K D, TAUCHERT T R, BLANDFORD G E. High-order thermoelastic composite plate theories-An analytic comparison[J]. Journal of Thermal Stresses, 1993, 16(3):265-284.
[6] ROHWER K, ROLFES R, SPARR H. Higher-order theories for thermal stresses in layered plates[J]. International Journal of Solids and Structures, 2001, 38(21):3673-3687.
[7] RADU A G, CHAYTTOPADHYAY A. Dynamic stability analysis of composite plates including delaminations using a higher order theory and transformation matrix approach[J]. International Journal of Solids and Structures, 2002, 39(7):1949-1965.
[8] TOURATIER M. An efficient standard plate theory[J]. International Journal of Engineering Science, 1991, 29(8):901-916.
[9] ZENKOUR A M, ALGHAMDI N A. Thermoelastic bending analysis of functionally graded sandwich plates[J]. Journal of Materials Science, 2008, 43(8):2574-2589.
[10] MATSUNAGA H. Stress analysis of functionally graded plates subjected to thermal and mechanical loadings[J]. Composite Structures, 2009, 87(4):344-357.
[11] REDDY J N. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics, 1984, 51(4):745-752.
[12] REDDY J N. Analysis of functionally graded plates[J]. International Journal for Numerical Methods in Engineering, 2000, 47(1-3):663-684.
[13] REDDY J N. A refined nonlinear theory of plates with transverse shear deformation[J]. International Journal of Solids and Structures, 1984, 20(9-10):881-896.
[14] YANG J, SHEN H S. Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions[J]. Composites Part B:Engineering, 2003, 34(2):103-115.
[15] DUC N D, TUNG H V. Mechanical and thermal postbuckling of higher order shear deformable functionally graded plates on elastic foundations[J]. Composite Structures, 2011, 93(11):2874-2881.
[16] SZEKRENYES A. Application of Reddy's third-order theory to delaminated orthotropic composite plates[J]. European Journal of Mechanics-A/Solids, 2014, 43:9-24.
[17] JIN G Y, YANG C M, LIU Z G. Vibration and damping analysis of sandwich viscoelastic-core beam using Reddy's higher-order theory[J]. Composite Structures, 2016, 140:390-409.
[18] CHEN W J, WU Z. A Selective review on recent development of displacement-based laminated plate theories[J]. Recent Patents on Mechanical Engineering, 2008, 100(1):29-44.
[19] WU Z, LO S H, SZE K Y. Influence of transverse normal strain and temperature profile on thermoelasticity of sandwiches in terms of the enhanced Reddy's theory[J]. Journal of Thermal Stresses, 2013, 36(1):19-36.
[20] KAPURIA S, DUMIR P C, AHMED A. An efficient higher order zigzag theory for composite and sandwich beams subjected to thermal loading[J]. International Journal of Solids and Structures, 2003, 40(24):6613-6631.
[21] MATSUNAGA H. Interlaminar stress analysis of laminated composite and sandwich circular arches subjected to thermal/mechanical loading[J]. Composite Structures, 2003, 60(3):345-358.

[1] 顾杰, 张曙光, 杨帆, 王保印. 再入飞行器沉浮特性近似解析及应用[J]. 航空学报, 2017, 38(10): 121174-121174.
[2] 傅瑜, 陈功, 卢宝刚, 郭继峰. 基于最优解析解的运载火箭大气层外自适应迭代制导方法[J]. 航空学报, 2011, 32(9): 1696-1704.
[3] 张峰;刘伟强. 层板孔隙结构中两个任意尺寸半球形珠状发汗的蒸发与燃烧速率分析[J]. 航空学报, 2007, 28(增): 70-75.
[4] 尚海滨;崔平远;栾恩杰. 星际小推力转移轨道快速设计方法[J]. 航空学报, 2007, 28(6): 1281-1286.
[5] 蒋持平;张行. 多钉连接件钉传载荷计算的一个解析方法[J]. 航空学报, 1994, 15(3): 310-317.
[6] 夏人伟;刘鹏. 基于二次规划的准解析解法的结构优化设计[J]. 航空学报, 1987, 8(9): 524-528.
[7] 王培基;N.G.斯蒂芬. 复合结构梁断面的扭转中心[J]. 航空学报, 1987, 8(9): 529-534.
[8] 杨岞生. 计算超音速后掠翼定常和非定常载荷系数分布的核函数法[J]. 航空学报, 1978, 00(1): 25-43.
[1] Wan Min;Zhang Weihong;Tan Gang. Efficient Simulation Model of Material Removal in Peripheral Milling of Thin-walled Workpiece[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(5): 1247 -1251 .
[2] Rong Yisheng;Liu Weiqiang. Influence of Opposing Jet on Flow Field and Aerodynamic Heating at Nose of a Reentry Vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1552 -1557 .
[3] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 .
[4] Li Pan;Chen Renliang. Rotor Tip Vortex Model and Its Effect on Free-vortex Wake Analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1517 -1523 .
[5] TAN Hui-jun;GUO Rong-wei. Wind Tunnel Tests of Hypersonic Inlets for Ramjet Modules of  Ramjet scramjet Combined Engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 783 -790 .
[6] Lei Shihao;Jiang Zimao. GUIDELINES OF AIRCRAFT CABIN ENVIRONMENT ACOUSTICS DESIGN[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(6): 716 -719 .
[7] WANG Xiao-lu;ZHU Zi-qiang. Hybrid Optimization Design of High Performance Unmanned Aerial Vehicle Airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 839 -844 .
[8] Cao Xiaorui;Dong Chaoyang;Wang Qing;Chen Yu. Radome Slope Estimation Using Multiple Model Based on EKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1608 -1613 .
[9] Li Guomin;Liu Jun;Sha Jiangbo. Effect of Si and Ti on Microstructures and Mechanical Properties of Nb-6Hf-4Zr-2B Alloy at Room Temperature[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1688 -1694 .
[10] Liang Zhi-yong;Zhang Zhou-guang. Song Huang-Cheng. THE STATISTICAL ANALYSIS AND CALCULATING MODEL OF TENSILE PROPERTIES OF SINGLE AND HYBRID COMPOSITES[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(5): 330 -335 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   

版权所有 © 航空学报编辑部  
地址:北京市海淀区北四环中路辅路238号 邮政编码:100083
电话:010-82317058, 82318016   E-mail:hkxb@buaa.edu.cn
为了更好的浏览网站,建议使用IE或IE内核浏览器