Please wait a minute...
航空学报
  首页 | 关于本刊 | 编 委 会 | 最新录用 | 过刊浏览 | 期刊征订 | 下载中心 | 广告服务 | 博客 | 论坛 | 联系我们 | English
航空学报  2017, Vol. 38 Issue (8): 121066-121066    DOI: 10.7527/S1000-6893.2017.121066
  流体力学与飞行力学 本期目录 | 过刊浏览 | 高级检索 |
航空发动机进气支板电热防冰试验
雷桂林1, 郑梅1, 董威1, 周志翔2, 董奇2
1. 上海交通大学 机械与动力工程学院, 上海 200240;
2. 中国航发湖南动力机械研究所, 株洲 412002
Test on electrothermal anti-icing of aero-engine inlet strut
LEI Guilin1, ZHENG Mei1, DONG Wei1, ZHOU Zhixiang2, DONG Qi2
1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
2. AECC Hunan Powerplant Research Institute, Zhuzhou 412002, China
下载:  PDF(3920KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

为了研究电加热防冰的效果,开展了小型航空发动机进气支板的电加热防冰试验。结合该型号发动机进气支板的结构特点,设计了3种电热防冰加热布置方式,分别在支板沿轴向的不同位置采用1~3个电加热棒作为防冰热源。通过模拟不同的发动机进气结冰环境参数和电加热功率,在冰风洞中对3种电加热方式进行了防冰试验研究。通过布置在支板外表面的温度测点记录了防冰过程中支板表面的瞬态温度变化,分析了支板防冰过程中表面温度的变化特点。防冰试验研究了热源总功率、热源布置方式、液态水含量以及来流温度对支板防冰性能的影响。试验结果表明,合理的电加热方式可以取得较好的防冰效果,同时避免支板后部的溢流水结冰。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雷桂林
郑梅
董威
周志翔
董奇
关键词:  电热防冰冰风洞试验航空发动机支板瞬态温度流动传热;    
Abstract: 

To study the performance of electrothermal anti-icing, a test on the inlet strut of the small aero-engine is carried out. According to the structural features of this type of aero-engine inlet strut, three heating arrangement modes of the electrothermal anti-icing system are designed, which adopt one to three electrical heating rods as the heat sources at different locations along the direction of the strut chord length. The three heating modes are tested in the icing wind tunnel with different icing environment and electrical heating power. The measuring points are set on the strut surface to record the transient temperature change during the anti-icing process. As a result, the characteristics of temperature change on the strut surface during the anti-icing tests can be analyzed. The effect of the electrothermal power, the heating modes, the liquid water content and the oncoming airflow temperature on the anti-icing performance of the strut are all investigated experimentally. The results show that a reasonable electrical heating mode can achieve better anti-icing performance and the runback ice can be also avoided near the strut tailing edge.

Key words:  electrothermal anti-icing;    icing wind tunnel test;    aero-engine strut;    transient temperature;    flow and heat transfer;
收稿日期:  2016-12-20      修回日期:  2017-01-20           出版日期:  2017-08-15      发布日期:  2017-03-20      期的出版日期:  2017-08-15
ZTFLH:  V211.4  
基金资助: 

国家"973"计划(2015CB755800);国家自然科学基金(11572195,51076103)

通讯作者:  董威,E-mail:wdong@sjtu.edu.cn    E-mail:  wdong@sjtu.edu.cn
引用本文:    
雷桂林, 郑梅, 董威, 周志翔, 董奇. 航空发动机进气支板电热防冰试验[J]. 航空学报, 2017, 38(8): 121066-121066.
LEI Guilin, ZHENG Mei, DONG Wei, ZHOU Zhixiang, DONG Qi. Test on electrothermal anti-icing of aero-engine inlet strut. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(8): 121066-121066.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2017.121066  或          http://hkxb.buaa.edu.cn/CN/Y2017/V38/I8/121066

[1] WRIGHT W B, KEITH J T G, DEWITT K J. Two-dimensional simulation of electrothermal deicing of aircraft components[J]. Journal of Aircraft, 1989, 26(6):554-562.
[2] HENRY R. Development of an electrothermal de-icing/anti-icing model:AIAA-1992-0526[R]. Reston, VA:AIAA, 1992.
[3] YASLIK A D, DEWITT K J, KEITH J T G, et al. Three-dimensional simulation of electrothermal deicing systems[J]. Journal of Aircraft, 1992, 29(6):1035-1042.
[4] HUANG J R, KEITH J T G, DE W T J. Numerical simulation of an electrothermally de-iced aircraft surface using the finite element method:AIAA-1991-0268[R]. Reston, VA:AIAA, 1991.
[5] REID T, BARUZZI G S, HABASHI W G. Fensap-ice:Unsteady conjugate heat transfer simulation of electrothermal de-icing[J]. Journal of Aircraft, 2012, 49(4):1101-1109.
[6] POURBAGIAN M, HABASHI W G. Aero-thermal optimization of in-flight electro-thermal ice protection systems in transient de-icing mode[J]. International Journal of Heat and Fluid Flow, 2015, 54:167-182.
[7] FAKOREDE O, IBRAHIM H, ILINCA A, et al. Experimental investigation of power requirements for wind turbines electrothermal anti-icing systems[M]. Rijeka:InTech, 2016.
[8] BUSCHHORN S T, KESSLER S, LACHMANN N, et al. Electrothermal icing protection of aerosurfaces using conductive polymer nanocomposites:AIAA-2013-1729[R]. Reston, VA:AIAA, 2013.
[9] 常士楠, 艾素霄, 霍西恒, 等. 改进的电热除冰系统仿真[J]. 航空动力学报, 2008, 13(10):1753-1758. CHANG S N, AI S X, HUO X H, et al. Improved simulation of electrothermal de-icing system[J]. Journal of Aerospace Power, 2008, 13(10):1753-1758(in Chinese).
[10] 杨诗雨, 常士楠, 高艳欣, 等. 旋转帽罩电加热防冰瞬态过程研究[J]. 空气动力学学报, 2016, 34(3):289-294. YANG S Y, CHANG S N, GAO Y X, et al. Investigation of rotary cone electric heating anti-icing transient process[J]. Acta Aerodynamic Sinica, 2016, 34(3):289-294(in Chinese).
[11] 胡娅萍. 航空发动机进口部件积冰的数值模拟研究[D]. 南京:南京航空航天大学, 2008. HU Y P. Numerical simulation of ice accretion on aero-engine entry components[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008(in Chinese).
[12] BU X, LIN G, YU J, et al. Numerical simulation of an airfoil electrothermal anti-icing system[J]. Proceeding of Institution of Mechaniced Engineers Part G:Journal of Aeronspace Engineering, 2012, 227(10):1608-1622.
[13] 钟国. 翼型电热防/除冰系统的数值模拟[J]. 航空制造技术, 2011, 520(4):75-79. ZHONG G. Simulation of airfoil electro-thermal anti-ice/de-ice system[J]. Aeronautical Manufacturing Technology, 2011, 520(4):75-79(in Chinese).
[14] DONG W, ZHU J J, ZHOU Z X, et al. Heat transfer and temperature analysis of an aeroengine strut under icing conditions[J]. Journal of Aircraft, 2015, 52(1):216-225.
[15] 董威, 朱剑鋆, 周志翔, 等. 航空发动机支板热滑油防冰性能试验[J]. 航空学报, 2014, 35(7):1845-1853. DONG W, ZHU J J, ZHOU Z X, et al. Test on performance of an aero-engine strut hot lubrication oil anti-icing system[J]. Acta Aeronautica et Astronuatica Sinica, 2014, 35(7):1845-1853(in Chinese).
[16] 肖春华, 桂业伟, 杜雁霞, 等. 电热除冰传热特性的结冰风洞实验研究[J]. 实验流体力学, 2010, 24(4):21-24. XIAO C H, GUI Y W, DU Y X, et al. Experimental study on heat transfer characteristics of aircraft electrothermal deicing in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4):21-24(in Chinese).
[17] LEI G L, DONG W, ZHU J J, et al. A new melting model in electrothermal de-icing simulation:GT2015-42555[R]. New York:ASME, 2015.
[18] LEI G L, DONG W, ZHU J J, et al. Numerical investigation of the electrothermal de-icing process of a rotor blade:2015-01-2[R]. Warrendale, PA:SAE, 2015.
[19] LEI G L, DONG W, ZHENG M, et al. Numerical investigation on heat transfer and melting process of ice with different porosities[J]. International Journal of Heat and Mass Transfer, 2016, 107:934-944.
[20] 朱光亚. 电加热防冰部件加热功率的分布特性研究[D]. 南京:南京航空航天大学, 2014. ZHU G Y. Study on heat power distribution characteristic for aircraft anti-ice components[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[21] 马辉, 张大林, 孟繁鑫, 等. 复合材料部件电加热防冰性能试验[J]. 航空学报, 2013, 34(8):1846-1853. MA H, ZHANG D L, MENG F X, et al. Experimental of electro-thermal anti-icing on a composite assembly[J]. Acta Aeronuatica et Astronuatica Sinica, 2013, 34(8):1846-1853(in Chinese).
[22] 霍西恒, 屠敏, 常士楠, 等. CJ818客机尾翼周期电热除冰系统计算分析[J]. 民用飞机设计与研究, 2009(S1):126-130. HUO X H, TU M, CHANG S N, et al. Cycle electrothermal de-icing system analysis of CJ818 aircraft tail[J]. Civil Aircraft Design and Research, 2009(S1):126-130(in Chinese).
[23] 李清英, 朱春玲, 白天. 电脉冲除冰系统的除冰实验与数值模拟[J]. 航空动力学报, 2012, 27(2):350-355. LI Q Y, ZHU C L, BAI T. De-icing experimental and numerical simulation of the electro-impulse de-icing system[J]. Journal of Aerospace Power, 2012, 27(2):350-355(in Chinese).

[1] 李岩, 王绍龙, 易贤, 周志宏, 郭龙. 绕轴旋转圆柱结冰特性结冰风洞试验[J]. 航空学报, 2017, 38(2): 520693-520703.
[2] 马辉, 张大林, 孟繁鑫, 陈维建. 复合材料部件电加热防冰性能试验[J]. 航空学报, 2013, 34(8): 1846-1853.
[3] 陈浩然;息志臣;李宏伟;成万植;孙延波. 复合材料层合回转壳瞬态温度场和热应力场分析[J]. 航空学报, 1991, 12(5): 256-263.
[1] Wan Min;Zhang Weihong;Tan Gang. Efficient Simulation Model of Material Removal in Peripheral Milling of Thin-walled Workpiece[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(5): 1247 -1251 .
[2] Rong Yisheng;Liu Weiqiang. Influence of Opposing Jet on Flow Field and Aerodynamic Heating at Nose of a Reentry Vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1552 -1557 .
[3] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 .
[4] Li Pan;Chen Renliang. Rotor Tip Vortex Model and Its Effect on Free-vortex Wake Analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1517 -1523 .
[5] TAN Hui-jun;GUO Rong-wei. Wind Tunnel Tests of Hypersonic Inlets for Ramjet Modules of  Ramjet scramjet Combined Engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 783 -790 .
[6] Lei Shihao;Jiang Zimao. GUIDELINES OF AIRCRAFT CABIN ENVIRONMENT ACOUSTICS DESIGN[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(6): 716 -719 .
[7] WANG Xiao-lu;ZHU Zi-qiang. Hybrid Optimization Design of High Performance Unmanned Aerial Vehicle Airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 839 -844 .
[8] Cao Xiaorui;Dong Chaoyang;Wang Qing;Chen Yu. Radome Slope Estimation Using Multiple Model Based on EKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1608 -1613 .
[9] Li Guomin;Liu Jun;Sha Jiangbo. Effect of Si and Ti on Microstructures and Mechanical Properties of Nb-6Hf-4Zr-2B Alloy at Room Temperature[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1688 -1694 .
[10] Liang Zhi-yong;Zhang Zhou-guang. Song Huang-Cheng. THE STATISTICAL ANALYSIS AND CALCULATING MODEL OF TENSILE PROPERTIES OF SINGLE AND HYBRID COMPOSITES[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(5): 330 -335 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   

版权所有 © 航空学报编辑部  
地址:北京市海淀区北四环中路辅路238号 邮政编码:100083
电话:010-82317058, 82318016   E-mail:hkxb@buaa.edu.cn
为了更好的浏览网站,建议使用IE或IE内核浏览器