Please wait a minute...
航空学报
  首页 | 关于本刊 | 编 委 会 | 最新录用 | 过刊浏览 | 期刊征订 | 下载中心 | 广告服务 | 博客 | 论坛 | 联系我们 | English
航空学报  2017, Vol. 38 Issue (8): 120764-120764    DOI: 10.7527/S1000-6893.2017.120764
  流体力学与飞行力学 本期目录 | 过刊浏览 | 高级检索 |
低韦伯数非牛顿射流撞击破碎直接数值模拟
朱呈祥, 陈荣钱, 尤延铖
厦门大学 航空航天学院, 厦门 361005
Direct numerical simulation of impinging jet breakup with non-Newtonian properties at low Weber number
ZHU Chengxiang, CHEN Rongqian, YOU Yancheng
School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
下载:  PDF(2952KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

非牛顿射流的撞击破碎在液体火箭推进系统中被广泛用于燃料的喷注雾化,然而人们对其破碎物理机制却知之甚少。本文将采用基于液体体积法的直接数值模拟(DNS)工具,研究夹角为90° 的2个等直径低韦伯数射流撞击现象,并分析二者形成的单一对角射流特征及其破碎机理。研究结果表明,撞击形成的单一对角射流直径较原射流直径大1.66倍,并在头部形成液滴诱导破碎的发生。除了头部破碎,在对角射流的发展过程中还观察到一类液柱破碎,表现为射流表面不稳定波不断发展形成新的弯曲波破碎,并产生卫星液滴及液滴的融合。伴随两股射流撞击的发生,气液两相交界面的面积也不断减小,同时,射流内部的黏性也不断变化,在本文的低雷诺数和低韦伯数条件下,流体内部黏性系数变化超过10%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱呈祥
陈荣钱
尤延铖
关键词:  撞击破碎非牛顿流体对角射流直接数值模拟低韦伯数;    
Abstract: 

Impinging jet breakup with non-Newtonian properties has been widely applied in the liquid rocket propulsion system for fuel atomization. However, the basic breakup mechanism of the phenomena still remains unsolved up to now. In the present work, a direct numerical simulation (DNS) based on the volume of fluid method is carried out to investigate the impinging phenomena of two orthogonal identical liquid jets, and to analyze the characteristics and the breakup of the resulted diagonal jet. The results indicate that the diameter of the diagonal jet is 1.66 times larger than that of the original jet. The head breakup can be observed near the jet tip, and the column breakup can be also observed. Due to surface wave development, wavy breakup is generated with the formation of satellite droplets and droplet collision. During the impinging process, the total surface area of the liquid decreases. The local viscosity of the shear thinning liquid decreases as well. Under the condition of low Reynolds and Weber numbers in the present work, the local viscosity varies over 10% spatially.

Key words:  impinging jet breakup;    non-Newtonian fluid;    diagonal jet;    direct numerical simulation;    low Weber number;
收稿日期:  2016-09-08      修回日期:  2016-11-21           出版日期:  2017-08-15      发布日期:  2017-03-20      期的出版日期:  2017-08-15
ZTFLH:  V231.2  
基金资助: 

国家自然科学基金(51606161,91441128);中央高校基本科研业务费专项资金(20720170055);福建省自然科学基金

通讯作者:  尤延铖,E-mail:yancheng.you@xmu.edu.cn    E-mail:  yancheng.you@xmu.edu.cn
引用本文:    
朱呈祥, 陈荣钱, 尤延铖. 低韦伯数非牛顿射流撞击破碎直接数值模拟[J]. 航空学报, 2017, 38(8): 120764-120764.
ZHU Chengxiang, CHEN Rongqian, YOU Yancheng. Direct numerical simulation of impinging jet breakup with non-Newtonian properties at low Weber number. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(8): 120764-120764.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2017.120764  或          http://hkxb.buaa.edu.cn/CN/Y2017/V38/I8/120764

[1] LIN S P, REITZ R D. Drop and spray formation from a liquid jet[J]. Annual Review of Fluid Mechanics, 1998, 30(1):85-105.
[2] EGGERS J, VILLERMAUX E. Physics of liquid jets[J]. Reports on Progress in Physics, 2008, 71(3):036601.
[3] GOROKOVSKI M, HERRMANN M. Modeling primary atomization[J]. Annual Review of Fluid Mechanics, 2008, 40(1):343-366.
[4] CIEZKI H K, NEGRI M, HURTTLEN J, et al. Overview of the German Gel Propulsion Technology Program:AIAA-2014-3794[R]. Reston, VA:AIAA, 2014.
[5] RAMASUBRAMANIAN C, NOTAR V, LEE J G. Characterization of near-field spray of nongelled-and gelled impinging doublets at high pressure[J]. Journal of Propulsion and Power, 2015, 31(6):1642-1652.
[6] YANG L J, FU Q F, QU Y Y, et al. Breakup of a power-law liquid sheet formed by an impinging jet injector[J]. International Journal of Multiphase Flow, 2012, 39:37-44.
[7] 杨伟东, 张蒙正. 凝胶推进剂流变及雾化特性研究与进展[J]. 火箭推进, 2005, 31(5):37-42. YANG W D, ZHANG M Z. Research and development of rheological and atomization characteristics of gelled propellants[J]. Journal of Rocket Propulsion, 2005, 31(5):37-42(in Chinese).
[8] 夏振炎, 李珍妮, 李建军, 等. 撞击式射流破碎特性的实验研究[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(7):770-776. XIA Z Y, LI Z N, LI J J, et al. An experimental study on breakup characteristics of impinging jets[J]. Journal of Tianjin University (Science and Technology), 2016, 49(7):770-776(in Chinese).
[9] XIAO H, SHI Y, XU Z, et al. Atomization characteristics of gelled hypergolic propellant simulants[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(4):743-747.
[10] 邓寒玉, 封锋, 武晓松, 等. 基于扩展TAB模型的凝胶液滴二次雾化特性研究[J]. 推进技术, 2015, 36(11):1734-1740. DENG H Y, FENG F, WU X S, et al. Characteristics of second atomization for gelled droplet based on extended TAB model[J]. Journal of Propulsion Technology, 2015, 36(11):1734-1740(in Chinese).
[11] MA D J, CHEN X D, KHARE P. Atomization patterns and breakup characteristics of liquid sheets formed by two impinging jets:AIAA-2011-0097[R]. Reston:AIAA, 2011.
[12] 刘虎, 强洪夫, 韩亚伟, 等. 幂律型凝胶推进剂射流撞击雾化SPH模拟[J]. 推进技术, 2015, 36(9):1416-1425. LIU H, QIANG H F, HAN Y W, et al. SPH simulation of atomization characteristics of power-law gelled propellant formed by two impinging jets[J]. Journal of Propulsion Technology, 2015, 36(9):1416-1425(in Chinese).
[13] HIRT C W, NICHOLOS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
[14] RIDER W J, KOTHE D B. Reconstructing volume tracking[J]. Journal of Computational Physics, 1998, 141(2):112-152.
[15] SCHLOTTKE J, WEIGAND B. Direct numerical simulation of evaporating droplets[J]. Journal of Computational Physics, 2008, 227(10):5215-5237.
[16] GOMMA H, KUMAR S, HUBER C, et al. Numerical comparison of 3D jet breakup using a compression scheme and an interface reconstruction based VOF-code[C]//24th ILASS Europe, 2011.
[17] MOTZIGEMBA M, ROTH N, BOTHE D, et al. The effect of non-Newtonian flow behavior on binary droplet collisions:VOF-simulation and experimental analysis[C]//Proceedings of ILASS-Europe, 2002.
[18] FOCKE C, BOTHE D. Computational analysis of binary collisions of shear thinning droplets[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(14):799-810.
[19] ZHU C, ERTL M, WEIGNAD B. Numerical investigation on the primary breakup of an inelastic non-Newtonian liquid jet with inflow turbulence[J]. Physics of Fluids, 2013, 25:083102.
[20] SCHRÖDER J, LEDERER M L, GAUKEL V, et al. Effect of atomizer geometry and rheological properties on effervescent atomization of aqueous polyvinylphrrolidone solution[C]//24th ILASS Europe, 2011.
[21] BATCHELOR G K. The theory of homogeneous turbu-lence[M]. Cambridge:Cambridge University Press, 1953.
[22] BREMOND N, CLANET C, VILLERMAUX E. Atomization of undulating liquid sheets[J]. Journal of Fluid Mechanics, 2007, 585:421-456.
[23] QIAN J, LAW C K. Regimes of coalescence and separation in droplet collision[J]. Journal of Fluid Mechanics, 1997, 331:59-80.
[24] MIESSE C C. Correlation of experimental data on the disintegration of liquid jets[J]. Industrial and Engineering Chemistry, 1955, 47(9):1690-1701.

[1] 朱德华, 袁湘江, 杨武兵. 粗糙元诱导的高超声速转捩机理及应用[J]. 航空学报, 2018, 39(1): 121349-121349.
[2] 朱呈祥, 尤延铖. 横向气流中非牛顿液体射流直接数值模拟[J]. 航空学报, 2016, 37(9): 2659-2668.
[3] 段志伟, 肖志祥. 粗糙元诱导的高超声速边界层转捩[J]. 航空学报, 2016, 37(8): 2454-2463.
[4] 童福林, 唐志共, 李新亮, 吴晓军, 朱兴坤. 压缩拐角激波与旁路转捩边界层干扰数值研究[J]. 航空学报, 2016, 37(12): 3588-3604.
[5] 童福林, 李新亮, 唐志共, 朱兴坤, 黄江涛. 转捩对压缩拐角激波/边界层干扰分离泡的影响[J]. 航空学报, 2016, 37(10): 2909-2921.
[6] 李新亮. 高超声速湍流直接数值模拟技术[J]. 航空学报, 2015, 36(1): 147-158.
[7] 冯峰, 王强. 基于Kirchhoff方法的亚声速平面混合层主涡对并声场分析[J]. 航空学报, 2013, 34(3): 464-473.
[8] 苏耀西. 注塑模熔体非牛顿流动的数值模拟[J]. 航空学报, 1997, 18(4): 448-450.
[1] Wan Min;Zhang Weihong;Tan Gang. Efficient Simulation Model of Material Removal in Peripheral Milling of Thin-walled Workpiece[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(5): 1247 -1251 .
[2] Rong Yisheng;Liu Weiqiang. Influence of Opposing Jet on Flow Field and Aerodynamic Heating at Nose of a Reentry Vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1552 -1557 .
[3] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 .
[4] Li Pan;Chen Renliang. Rotor Tip Vortex Model and Its Effect on Free-vortex Wake Analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1517 -1523 .
[5] TAN Hui-jun;GUO Rong-wei. Wind Tunnel Tests of Hypersonic Inlets for Ramjet Modules of  Ramjet scramjet Combined Engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 783 -790 .
[6] Lei Shihao;Jiang Zimao. GUIDELINES OF AIRCRAFT CABIN ENVIRONMENT ACOUSTICS DESIGN[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(6): 716 -719 .
[7] WANG Xiao-lu;ZHU Zi-qiang. Hybrid Optimization Design of High Performance Unmanned Aerial Vehicle Airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 839 -844 .
[8] Cao Xiaorui;Dong Chaoyang;Wang Qing;Chen Yu. Radome Slope Estimation Using Multiple Model Based on EKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1608 -1613 .
[9] Li Guomin;Liu Jun;Sha Jiangbo. Effect of Si and Ti on Microstructures and Mechanical Properties of Nb-6Hf-4Zr-2B Alloy at Room Temperature[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1688 -1694 .
[10] Liang Zhi-yong;Zhang Zhou-guang. Song Huang-Cheng. THE STATISTICAL ANALYSIS AND CALCULATING MODEL OF TENSILE PROPERTIES OF SINGLE AND HYBRID COMPOSITES[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(5): 330 -335 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   

版权所有 © 航空学报编辑部  
地址:北京市海淀区北四环中路辅路238号 邮政编码:100083
电话:010-82317058, 82318016   E-mail:hkxb@buaa.edu.cn
为了更好的浏览网站,建议使用IE或IE内核浏览器