Please wait a minute...
航空学报
  首页 | 关于本刊 | 编 委 会 | 最新录用 | 过刊浏览 | 期刊征订 | 下载中心 | 广告服务 | 博客 | 论坛 | 联系我们 | English
航空学报  2017, Vol. 38 Issue (8): 221024-221024    DOI: 10.7527/S1000-6893.2017.221024
  固体力学与飞行器总体设计 本期目录 | 过刊浏览 | 高级检索 |
基于频响函数的复合材料空间分布模量场识别
范刚1,2, 吴邵庆1,2, 李彦斌3, 费庆国1,2, 韩晓林1,2
1. 东南大学 工程力学系, 南京 210096;
2. 江苏省工程力学分析重点实验室, 南京 210096;
3. 东南大学 机械工程学院, 南京 211189
Identification of spatial distribution of modulus field of composite material based on frequency response function
FAN Gang1,2, WU Shaoqing1,2, LI Yanbin3, FEI Qingguo1,2, HAN Xiaolin1,2
1. Department of Engineering Mechanics, Southeast University, Nanjing 210096, China;
2. Jiangsu Key Laboratory of Engineering Mechanics, Nanjing 210096, China;
3. School of Mechanical Engineering, Southeast University, Nanjing 211189, China
下载:  PDF(3034KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

针对纤维编织复合材料宏观力学性能的非均匀特性,提出了基于频响函数(FRF)的复合材料梁空间分布弹性模量场的识别方法。采用基于灵敏度分析的方法构造优化问题,以实测和计算加速度频响残差范数最小为目标函数,进而通过迭代求解识别出复合材料梁弹性模量的空间分布。首先,以悬臂梁模型为研究对象进行数值仿真分析,验证识别方法的正确性。进一步开展复合材料梁模态试验研究,将复合材料三点弯曲试验获取的近似均质化弹性模量作为优化问题的初值;利用非接触测量方法获取模态试验中梁上各测点处的动位移响应,并计算得到各测点的加速度频响函数作为优化问题的输入值。结果表明:采用所提出的识别方法获取的模量场计算得到的梁上各处频响函数与试验获取值吻合,且所提方法在实测动响应存在噪声污染工况下是可行的。该方法能够为复合材料等效建模提供更加准确的弹性模量场。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范刚
吴邵庆
李彦斌
费庆国
韩晓林
关键词:  纤维编织复合材料非均匀特性弹性模量场模态试验加速度频响灵敏度分析;    
Abstract: 

Considering the heterogeneity of the macroscopic mechanical properties of fiber braided composites, an identification method for spatial distribution of elastic modulus field of the composite beam structure based on Frequency Response Function (FRF) is proposed. The optimization problem is constructed based on sensitivity analysis. The minimum norm of the difference between the measured and the calculated frequency response of acceleration is taken as the objective function, and the spatial distribution of the elastic modulus of the composite beam is then identified by iterative methods. Numerical simulation of a cantilever beam is conducted to verify the correctness of the identification method, and the modal test is then carried out. The homogeneous elastic modulus obtained from a three-point bending test of the same composite beam is taken as the initial value of the optimization problem. The non-contact measurement approach is adopted to obtain the dynamic displacement response of each measuring point on the beam in the modal test, and the acceleration frequency response function is calculated as input data. Results show that the frequency response functions of each measuring point on the beam calculated by the identified elastic modulus field agree well with the experimental values, and the proposed method is feasible when the measurement dynamic responses are noise contaminated. This method is capable of providing a more accurate elastic modulus field for equivalent modeling of composite materials.

Key words:  fiber braided composite;    heterogeneity;    elastic modulus field;    modal test;    frequency response of acceleration;    sensitivity analysis;
收稿日期:  2016-12-06      修回日期:  2016-12-27           出版日期:  2017-08-15      发布日期:  2017-03-15      期的出版日期:  2017-08-15
ZTFLH:  V214.8  
  O313.7  
基金资助: 

国家自然科学基金(11402052,11572086);教育部新世纪优秀人才支持计划(NCET-11-0086);江苏省自然科学基金(BK20140616)

通讯作者:  费庆国,E-mail:qgfei@seu.edu.cn    E-mail:  qgfei@seu.edu.cn
引用本文:    
范刚, 吴邵庆, 李彦斌, 费庆国, 韩晓林. 基于频响函数的复合材料空间分布模量场识别[J]. 航空学报, 2017, 38(8): 221024-221024.
FAN Gang, WU Shaoqing, LI Yanbin, FEI Qingguo, HAN Xiaolin. Identification of spatial distribution of modulus field of composite material based on frequency response function. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(8): 221024-221024.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2017.221024  或          http://hkxb.buaa.edu.cn/CN/Y2017/V38/I8/221024

[1] 汪星明, 邢誉峰. 三维编织复合材料研究进展[J]. 航空学报, 2010, 31(5):914-927. WANG X M, XING Y F. Developments in research on 3D braided composites[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5):914-927(in Chinese).
[2] 杨乃宾. 新一代大型客机复合材料结构[J]. 航空学报, 2008, 29(3):596-604. YANG N B. Composite structure for new generation large commercial jet[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):596-604(in Chinese).
[3] 章令晖, 陈萍. 复合材料在空间遥感器中的应用进展及关键问题[J]. 航空学报, 2015, 36(5):1385-1400. ZHANG L H, CHEN P. Application progress of composites in space remote sensor and its key problems[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1385-1400(in Chinese).
[4] 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322. MA L M, ZHANG J Z, YUE G Q, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2):317-322(in Chinese).
[5] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):2773-2797. GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2773-2797(in Chinese).
[6] 高思阳, 张晶, 付强, 等. 纤维复合材料刚度设计的力学原理及其应用[J]. 航空学报, 2009, 30(7):1227-1235. GAO S Y, ZHANG J, FU Q, et al. Mechanical principles for stiffness design of fibrous composites and their application[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7):1227-1235(in Chinese).
[7] 邢誉峰, 田金梅. 三维正交机织复合材料单胞特征单元及其应用[J]. 航空学报, 2007, 28(4):881-885. XING Y F, TIAN J M. Unit cell eigen-element of 3-D orthogonal woven composites and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4):881-885(in Chinese).
[8] DALMAZ A, DUCRET D, GUERJOUMA R E, et al. Elastic moduli of a 2.5D C/SiC composite:Experimental and theoretical estimates[J]. Composites Science and Technology, 2000, 60(6):913-925.
[9] 刘玉佳, 燕瑛, 苏玲. 双随机分布细观分析模型与复合材料性能预报[J]. 复合材料学报, 2011, 28(2):206-210. LIU Y J, YAN Y, SU L. Double-random distribution model and properties prediction of composites[J]. Acta Materiae Compositae Sinica, 2011, 28(2):206-210(in Chinese).
[10] 孔春元, 孙志刚, 高希光, 等. 2.5维C/SiC复合材料经向拉伸性能[J]. 复合材料学报, 2012, 29(2):192-198. KONG C Y, SUN Z G, GAO X G, et al. Tensile property of 2.5D C/SiC composites in warp direction[J]. Acta Materiae Compositae Sinica, 2012, 29(2):192-198(in Chinese).
[11] RAHMANI B, MORTAZAVI F, VILLEMURE I, et al. A new approach to inverse identification of mechanical properties of composite materials:Regularized model updating[J]. Composite Structures, 2013, 105:116-125.
[12] BOLZON G, TALASSI M. An effective inverse analysis tool for parameter identification of anisotropic material models[J]. International Journal of Mechanical Sciences, 2013, 77:130-144.
[13] GRAS R, LECLERC H, HILD F, et al. Identification of a set of macroscopic elastic parameters in a 3D woven composite:Uncertainty analysis and regularization[J]. International Journal of Solids and Structures, 2015, 55:2-16.
[14] SEPAHVAND K, MARBURG S. Identification of composite uncertain material parameters from experimental modal data[J]. Probabilistic Engineering Mechanics, 2014, 37:148-153.
[15] 姜东, 陆韬, 吴邵庆, 等. 2.5维C/SiC复合材料弹性参数不确定性识别方法研究[J]. 振动工程学报, 2014, 27(3):318-325. JIANG D, LU T, WU S Q, et al. An elastic moduli identification method of 2.5 dimensional C/SiC composite with uncertainty[J]. Journal of Vibration Engineering, 2014, 27(3):318-325(in Chinese).
[16] MEHREZ L, MOENS D, VANDEPITTE D. Stochastic identification of composite material properties from limited experimental databases, Part I:Experimental database construction[J]. Mechanical Systems and Signal Processing, 2012, 27:471-483.
[17] JIANG D, ZHANG P, FEI Q G, et al. Comparative study of model updating methods using frequency response function data[J]. Journal of Vibroengineering, 2014, 16(5):2305-2318.
[18] MOTTERSHEAD J E, LINK M, FRISWELL M I. The sensitivity method in finite element model updating:A tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25(7):2275-2296.
[19] FEI Q G, JIANG D, ZHANG D H, et al. Finite element model updating using base excitation response function[J]. Journal of Vibroengineering, 2013, 15(1):9-22.
[20] 李德葆, 陆秋海. 工程振动试验分析[M]. 北京:清华大学出版社, 2004:269-287. LI D B, LU Q H. Analysis of experiments in engineering vibration[M]. Beijing:Tsinghua University Press, 2004:269-287(in Chinese).
[21] 唐进元, 陈维涛, 陈思雨, 等. 一种新的小波阈值函数及其在振动信号去噪分析中的应用[J]. 振动与冲击, 2009, 28(7):118-121. TANG J Y, CHEN W T, CHEN S Y, et al. Wavelet-based vibration signal denoising with a new adaptive thresholding function[J]. Journal of Vibration and Shock, 2009, 28(7):118-121(in Chinese).
[22] DONG W Y, DING H. Full frequency de-noising method based on wavelet decomposition and noise-type detection[J]. Neurocomputing, 2016, 214:902-909.

[1] 谭元球, 臧朝平, 周标, 段勇亮, E. P. PETROV. 失谐叶盘受迫响应的灵敏度分析方法[J]. 航空学报, 2017, 38(12): 221305-221305.
[2] 谭光辉, 李秋彦, 邓俊. 热环境下结构固有振动特性试验及分析[J]. 航空学报, 2016, 37(S1): 32-37.
[3] 阮文斌, 刘洋, 熊磊. 基于全局灵敏度分析的侧向气动导数不确定性对侧向飞行载荷的影响[J]. 航空学报, 2016, 37(6): 1827-1832.
[4] 巩祥瑞, 吕震宙, 左健巍. 两种基于方差的全局灵敏度分析W指标改进算法[J]. 航空学报, 2016, 37(6): 1888-1898.
[5] 吴大方, 王岳武, 商兰, 蒲颖, 王怀涛. 1200℃高温环境下板结构热模态试验研究与数值模拟[J]. 航空学报, 2016, 37(6): 1861-1875.
[6] 李慧通, 赵阳, 田浩, 黄意新. 导弹抛底罩过程建模与分析[J]. 航空学报, 2016, 37(6): 1876-1887.
[7] 刘浩, 李晓东, 杨文岐, 孙侠生. 高速飞行器翼面结构热振动试验的TARMA模型方法[J]. 航空学报, 2015, 36(7): 2225-2235.
[8] 赵亮, 杨战平. 基于贝叶斯因子和二阶概率方法的圣地亚热传导模型确认挑战问题[J]. 航空学报, 2014, 35(9): 2513-2521.
[9] 付志超, 仲维国, 陈志平, 朱振宇, 吕计男, 刘子强, 贾永清. 大展弦比柔性机翼的结构动力学特性试验研究[J]. 航空学报, 2013, 34(9): 2177-2184.
[10] 锁斌, 曾超, 程永生, 李世玲. 认知不确定性下可靠性灵敏度分析的新指标[J]. 航空学报, 2013, 34(7): 1605-1615.
[11] 李焦赞, 高正红. 多变量气动设计问题分层协同优化[J]. 航空学报, 2013, 34(1): 58-65.
[12] 房冠成, 吕震宙, 魏鹏飞. 结构系统可靠性及可靠性灵敏度分析的改进子集模拟法[J]. 航空学报, 2012, 33(8): 1440-1447.
[13] 李贵杰, 吕震宙, 王攀. 结构非概率可靠性灵敏度分析方法[J]. 航空学报, 2012, (3): 501-507.
[14] 郝文锐, 吕震宙, 田龙飞. 基于方差的相关输入变量重要性测度分析新方法[J]. 航空学报, 2011, 32(9): 1637-1643.
[15] 丁继锋;马兴瑞;韩增尧;庞世伟. 结构动力学模型修正的三步策略及其实践[J]. 航空学报, 2010, 31(3): 546-552.
[1] Wan Min;Zhang Weihong;Tan Gang. Efficient Simulation Model of Material Removal in Peripheral Milling of Thin-walled Workpiece[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(5): 1247 -1251 .
[2] Rong Yisheng;Liu Weiqiang. Influence of Opposing Jet on Flow Field and Aerodynamic Heating at Nose of a Reentry Vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1552 -1557 .
[3] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 .
[4] Li Pan;Chen Renliang. Rotor Tip Vortex Model and Its Effect on Free-vortex Wake Analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1517 -1523 .
[5] TAN Hui-jun;GUO Rong-wei. Wind Tunnel Tests of Hypersonic Inlets for Ramjet Modules of  Ramjet scramjet Combined Engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 783 -790 .
[6] Lei Shihao;Jiang Zimao. GUIDELINES OF AIRCRAFT CABIN ENVIRONMENT ACOUSTICS DESIGN[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(6): 716 -719 .
[7] WANG Xiao-lu;ZHU Zi-qiang. Hybrid Optimization Design of High Performance Unmanned Aerial Vehicle Airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 839 -844 .
[8] Cao Xiaorui;Dong Chaoyang;Wang Qing;Chen Yu. Radome Slope Estimation Using Multiple Model Based on EKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1608 -1613 .
[9] Li Guomin;Liu Jun;Sha Jiangbo. Effect of Si and Ti on Microstructures and Mechanical Properties of Nb-6Hf-4Zr-2B Alloy at Room Temperature[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1688 -1694 .
[10] Liang Zhi-yong;Zhang Zhou-guang. Song Huang-Cheng. THE STATISTICAL ANALYSIS AND CALCULATING MODEL OF TENSILE PROPERTIES OF SINGLE AND HYBRID COMPOSITES[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(5): 330 -335 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   

版权所有 © 航空学报编辑部  
地址:北京市海淀区北四环中路辅路238号 邮政编码:100083
电话:010-82317058, 82318016   E-mail:hkxb@buaa.edu.cn
为了更好的浏览网站,建议使用IE或IE内核浏览器