首页 | 关于本刊 | 编 委 会 | 最新录用 | 过刊浏览 | 期刊征订 | 下载中心 | 广告服务 | 博客 | 论坛 | 联系我们 | English
 航空学报  2017, Vol. 38 Issue (8): 221032-221032    DOI: 10.7527/S1000-6893.2017.221032
 固体力学与飞行器总体设计 本期目录 | 过刊浏览 | 高级检索 |

1. 浙江大学 能源工程学院, 杭州 310012;
2. 浙江工业大学 应用力学研究所, 杭州 310012
Dynamic response of aircraft tire bursting debris under internal pressure
ZHANG Fan1, ZHENG Jinyang1, MA Li2
1. College of Energy Engineering, Zhejiang University, Hangzhou 310012, China;
2. Institute of Applied Mechanics, Zhejiang University of Technology, Hangzhou 310012, China
 下载:  PDF(3266KB)  输出:  BibTeX | EndNote (RIS)

Abstract:

When the aircraft tire bursts, the velocity of the debris will be significantly increased because of the impact of internal pressure, rather than remain consistent with that of the tire in landing as specified by airworthiness standards. The model for dynamic response of bursting debris under internal pressure releasing is simulated by using dynamic grid and user defined function in Fluent, and the dynamic response program is coded by using the user defined function. Tire bursting failure is assumed to be caused by previous defects of the tire, and the dynamic process of debris can be decomposed into two phases:acceleration phase under the impact of internal pressure releasing, and deceleration motion phase under air resistance. The real-time pressure difference between both sides of debris is regarded as the only power source of the simplified physical burst model for analysis of the velocity of debris, the flow field pressure and velocity changes affected by internal pressure. The reduction model makes up the deficiency that previous mathematical models do not take into account the balance of internal and external pressure. The model can provide numerical reference for predicting the energy of debris after bursting and the energy of bursting airflow, and can thus help with the proposal of corresponding safety precautions.

Key words:  aircraft tire;    bursting debris;    fluid-solid coupling;    CFD;    user defined function;

 ZTFLH: V19

 引用本文: 张帆, 郑津洋, 马利. 内压作用下的航空轮胎爆破碎片动力响应[J]. 航空学报, 2017, 38(8): 221032-221032. ZHANG Fan, ZHENG Jinyang, MA Li. Dynamic response of aircraft tire bursting debris under internal pressure. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(8): 221032-221032. 链接本文: http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2017.221032  或          http://hkxb.buaa.edu.cn/CN/Y2017/V38/I8/221032
 [1] 龚荣亮. 飞机轮胎的结构及常见故障探究[J]. 中国高新技术企业, 2011(27):81-82. GONG R L. Aircrafttire structure and common faults[J]. China High Technology Enterprises, 2011(27):81-82(in Chinese). [2] 张建敏. 飞机轮胎爆破模式浅析[J]. 力学季刊, 2014, 35(1):139-148. ZHANG J M. A brief study on damaging effects of aeroplane tire and wheel failures[J]. Chinese Quarterly of Mechanics, 2014, 35(1):139-148(in Chinese). [3] 周易之, 舒平. 起飞阶段冲偏出跑道事故预防分析[J]. 中国安全科学学报, 2009, 19(1):38-44. ZHOU Y Z, SHU P. Analysis on prevention of runway overrun/excursion accident during takeoff[J]. China Safety Science Journal, 2009, 19(1):38-44(in Chinese). [4] 周应求. 航空轮胎爆破的原因分析及其预防措施[J]. 化工新型材料, 1980(10):1-6. ZHOU Y Q. Analysis and preventive measures of aviation tire blasting[J]. New Chemical Materials, 1980(10):1-6(in Chinese). [5] 霍志勤, 罗帆. 近十年中国民航事故及事故征候的统计分析[J]. 中国安全科学学报, 2006, 16(12):65-71. HUO Z Q, LUO F. Statistic analysis on accidents and incidents in the last decade in China civil aviation[J]. Chinese Safety Science Journal, 2006, 16(12):65-71(in Chinese). [6] HEFNY A F, EID H O, AL-BASHIR M, et al. Blast injuries of large tyres:Case series[J]. International Journal of Surgery, 2010, 8(2):151-154. [7] European Aviation Safety Agency. Notice of proposed amendment (NPA) 2013-02, Protection from debrisimpacts[S]. 2013. [8] Joint Aviation Authorities. JAA temporary guidance material, TGM/25/08(issue2), Wheel and tire failuremodel[S]. 2002. [9] 白杰, 董兴普, 王伟. 外来物损伤条件下航空轮胎爆破碎片产生机理及速度分析[J]. 橡胶工业, 2011, 58(11):658-661. BAI J, DONG X P, WANG W. Formation mechanism and speed of aircraft tire burst debris under FOD[J]. China Rubber Industry, 2011, 58(11):658-661(in Chinese). [10] 黄喜平, 陆波, 曹丹青. 在飞机起落架轮胎爆破时主起落架系统安全性分析方法[J]. 流体传动与控制, 2013(5):22-24. HUANG X P, LU B, CAO D Q. Method of main landing gear system security analysis when airplane landing gear's tire is bursting[J]. Fluid Power Transmission and Control, 2013(5):22-24(in Chinese). [11] 谢孟恺, 周昌明, 范平. 轮胎爆破下飞机液压能源系统安全性分析方法[J]. 航空科学技术, 2015, 26(9):46-49. XIE M K, ZHOU C M, FAN P. Aircraft hydraulic system safety analysis method for tire burst[J]. Aeronautical Science and Technology, 2015, 26(9):46-49(in Chinese). [12] 李田. 高速列车流固耦合计算方法及动力学性能研究[D]. 成都:西南交通大学, 2012. LI T. Approaches and dynamic performances of high-speed train fluid-structure[D]. Chengdu:Southwest Jiaotong University, 2012(in Chinese). [13] 邢景棠, 周盛, 崔尔杰. 流固耦合力学概述[J]. 力学进展, 1997, 27(1):20-39. XING J T, ZHOU S, CUI E J. A survey on the fluid-solid interaction mechanics[J]. Advances in Mechanics, 1997, 27(1):20-39(in Chinese). [14] STEIN K, TEZDUYAR T E, BENNEY R. Automatic mesh update with the solid-extension mesh moving technique[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(21-22):2019-2032. [15] 陈锋, 王春江, 周岱. 流固耦合理论与算法评述[J]. 空间结构, 2012, 18(4):55-63. CHEN F, WANG C J, ZHOU D. Review of theory and numerical methods of fluid-structure interaction[J]. Spatial Structures, 2012,18(4):55-63(in Chinese). [16] WALL W A, GERSTENBERGER A, GAMNITZER P, et al. Large deformation fluid-structure interaction-Advances in ALE methods and new fixed grid approaches[C]//Lecture Notes in Computational Science and Engineering, 2006, 53:195-232. [17] 何涛. 流固耦合新算法研究及其气动弹性应用[D]. 上海:上海交通大学, 2013. HE T. Novelpartitioned coupling algorithms for fluid-structure interaction with applications to aero elasticity[D]. Shanghai:Shanghai Jiao Tong University, 2013(in Chinese). [18] 刘学强, 李青, 柴建忠, 等. 一种新的动网格方法及其应用[J]. 航空学报, 2008, 29(4):817-822. LIU X Q, LI Q, CHAI J Z, et al. A new dynamic grid algrithm and its application[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):817-822(in Chinese). [19] MURMAN S M, AFTOSMIS M J, BERGER M J. Implicit approaches for moving boundaries in a 3-D Cartesian method:AIAA-2003-1119[R]. Reston, VA:AIAA, 2003. [20] LIEFVENDAHL M, TROENG C. Deformation and regeneration of the computational grid for CFD with moving boundaries:AIAA-2007-1458[R]. Reston, VA:AIAA, 2007. [21] HASSAN O, MORGAN K, WEATHERILL N. Unstructured mesh methods for the solution of the unsteady compressible flow equations with moving boundary components[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2007, 365(1859):2531-2552. [22] 周璇, 李水乡, 陈斌. 非结构动网格生成的弹簧-插值联合方法[J]. 航空学报, 2010, 31(7):1389-1395. ZHOU X, LI S X, CHEN B. Spring-interpolation approach for generating unstructured dynamic meshes[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1389-1395(in Chinese). [23] FAST P, SHELLEY M J. A moving overset grid method for interface dynamics applied to non-Newtonian Hele-Shaw flow[J]. Journal of Computational Physics, 2004, 195(1):117-142. [24] 辛颖. Fluent UDF方法在数值波浪水槽中的应用研究[D]. 大连:大连理工大学, 2013. XIN Y. Applicationof fluent UDF method in the study of numerical wave tank[D]. Dalian:Dalian University of Technology, 2013(in Chinese). [25] 伍贻兆, 田书玲, 夏健. 基于非结构动网格的非定常流数值模拟方法[J]. 航空学报, 2011, 32(1):15-26. WU Y Z, TIAN S L, XIA J. Unstructured grid methods for unsteady flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):15-26(in Chinese). [26] 杨小权, 杨爱明, 孙刚. 一种强耦合Spalart-Allmaras湍流模型的RANS方程的高效数值计算方法[J]. 航空学报, 2013, 34(9):2007-2018. YANG X Q, YANG A M, SUN G. An efficient numerical for coupling the RANS equations with Spalart-Allmaras turbulence model equation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2007-2018(in Chinese). [27] USA Federal Aviation Administration. FARS, PART25-airworthiness standards:Transport category airplanes[S]. 2000. [28] 赵雪娥, 孟亦飞, 刘秀玉. 燃烧与爆炸理论[M]. 北京:化学工业出版社, 2011:194. ZHAO X E, MENG Y F, LIU X Y. Combustion and explosion theory[M]. Beijing:Chemical Industry Press, 2011:194(in Chinese).
 [1] 王刚, 马博平, 雷知锦, 任炯, 叶正寅. 典型标模音爆的数值预测与分析[J]. 航空学报, 2018, 39(1): 121458-121458. [2] 张伟伟, 高弈奇, 全金楼, 苏丹. 失谐叶栅的受迫振动响应特性分析[J]. 航空学报, 2017, 38(9): 521018-521018. [3] 倪同兵, 招启军, 马砾. 基于IBC方法的旋翼BVI噪声主动控制机理[J]. 航空学报, 2017, 38(7): 120744-120744. [4] 马砾, 招启军, 赵蒙蒙, 王博. 基于CFD/CSD耦合方法的旋翼气动弹性载荷计算分析[J]. 航空学报, 2017, 38(6): 120762-120762. [5] 李映坤, 韩珺礼, 陈雄, 周长省, 巩伦昆. 基于多物理场耦合的双脉冲发动机点火过程数值模拟[J]. 航空学报, 2017, 38(4): 120409-120409. [6] 周铸, 黄江涛, 黄勇, 刘刚, 陈作斌, 王运涛, 江雄. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3): 20891-020891. [7] 何飞, 洪冠新, 刘海, 但聃, 王明. 基于高精度模态气动力的跨声速静弹高效分析方法[J]. 航空学报, 2017, 38(11): 121157-121157. [8] 王运涛, 孙岩, 孟德虹, 张书俊, 杨小川. 包含支撑装置和机翼变形的CRM-WB构型气动特性数值模拟[J]. 航空学报, 2017, 38(10): 121202-121202. [9] 黄宇, 阎超, 席柯, 王文. 基于数值虚拟飞行技术的飞行器动态特性分析[J]. 航空学报, 2016, 37(8): 2525-2538. [10] 孟德虹, 孙岩, 王运涛, 李伟. 战斗机垂尾脉动压力数值模拟[J]. 航空学报, 2016, 37(8): 2472-2480. [11] 陈琦, 郭勇颜, 谢昱飞, 陈坚强, 袁先旭. PID控制器与CFD的耦合模拟技术研究及应用[J]. 航空学报, 2016, 37(8): 2507-2516. [12] 张淼, 刘铁军, 马涂亮, 陈迎春, 程攀, 周峰. 基于CFD方法的大型客机高速气动设计[J]. 航空学报, 2016, 37(1): 244-254. [13] 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507-2528. [14] 胡国暾, 杜林, 孙晓峰. 基于浸入式边界法的叶栅颤振数值模拟[J]. 航空学报, 2015, 36(7): 2269-2278. [15] 李伟, 马宝峰. 一种改进型松耦合方法在机翼摇滚计算中的应用[J]. 航空学报, 2015, 36(6): 1805-1813.
 [1] Wan Min;Zhang Weihong;Tan Gang. Efficient Simulation Model of Material Removal in Peripheral Milling of Thin-walled Workpiece[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(5): 1247 -1251 . [2] Rong Yisheng;Liu Weiqiang. Influence of Opposing Jet on Flow Field and Aerodynamic Heating at Nose of a Reentry Vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1552 -1557 . [3] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 . [4] Li Pan;Chen Renliang. Rotor Tip Vortex Model and Its Effect on Free-vortex Wake Analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1517 -1523 . [5] TAN Hui-jun;GUO Rong-wei. Wind Tunnel Tests of Hypersonic Inlets for Ramjet Modules of  Ramjet scramjet Combined Engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 783 -790 . [6] Lei Shihao;Jiang Zimao. GUIDELINES OF AIRCRAFT CABIN ENVIRONMENT ACOUSTICS DESIGN[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(6): 716 -719 . [7] WANG Xiao-lu;ZHU Zi-qiang. Hybrid Optimization Design of High Performance Unmanned Aerial Vehicle Airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 839 -844 . [8] Cao Xiaorui;Dong Chaoyang;Wang Qing;Chen Yu. Radome Slope Estimation Using Multiple Model Based on EKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1608 -1613 . [9] Li Guomin;Liu Jun;Sha Jiangbo. Effect of Si and Ti on Microstructures and Mechanical Properties of Nb-6Hf-4Zr-2B Alloy at Room Temperature[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1688 -1694 . [10] Liang Zhi-yong;Zhang Zhou-guang. Song Huang-Cheng. THE STATISTICAL ANALYSIS AND CALCULATING MODEL OF TENSILE PROPERTIES OF SINGLE AND HYBRID COMPOSITES[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(5): 330 -335 .
Viewed
Full text

Abstract

Cited

Shared
Discussed
﻿
 版权所有 © 航空学报编辑部   地址：北京市海淀区北四环中路辅路238号　邮政编码：100083 电话：010-82317058, 82318016   E-mail：hkxb@buaa.edu.cn 为了更好的浏览网站，建议使用IE或IE内核浏览器