Please wait a minute...
航空学报
  首页 | 关于本刊 | 编 委 会 | 最新录用 | 过刊浏览 | 期刊征订 | 下载中心 | 广告服务 | 博客 | 论坛 | 联系我们 | English
航空学报  2017, Vol. 38 Issue (8): 120989-120989    DOI: 10.7527/S1000-6893.2017.120989
  流体力学与飞行力学 本期目录 | 过刊浏览 | 高级检索 |
高速复杂流动结构的视频测量
张征宇1,2, 王显圣1, 黄叙辉1, 周润1, 茆骥2
1. 中国空气动力研究与发展中心 高速空气动力研究所, 绵阳 621000;
2. 西南科技大学 信息工程学院, 绵阳 621000
Videogrammetry measurement for high-speed complex flow structures
ZHANG Zhengyu1,2, WANG Xiansheng1, HUANG Xuhui1, ZHOU Run1, MAO Ji2
1. High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
2. Information Engineering College, Southwest University of Science and Technology, Mianyang 621000, China
下载:  PDF(3421KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

为了定量显示空腔高速复杂流动结构,采用均布的小圆点作为背景纹影(BOS)的背景点,利用视频测量(VM)成熟的小圆点图像定位与匹配技术,克服了现有图像互相关技术对BOS的限制;推导非平行光穿过流场的偏折位移/角计算公式,基于VM的共线方程,准确计算从背景点到相机摄影中心的光束穿过流场产生的偏折位移场和光程差场(OPD)。FL-21风洞的某空腔高速(马赫数为0.6~2.0)复杂流动结构的视频测量结果表明:本方法可清楚分辨出亚微米量级的光程差差异与微弧度量级的偏折角差异,定量显示空腔高速流动产生的波/涡/剪切层的位置、强弱及其相互关系,为复杂流动结构与气动光学效应的测量与显示提供新的途径,其光路简单、无需价格昂贵的相干光源,具有应用前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张征宇
王显圣
黄叙辉
周润
茆骥
关键词:  气动光学视频测量流动显示纹影风洞试验成像检测;    
Abstract: 

To quantify the structures of high-speed flow over a cavity, small circle points with equal space in the row and column are used as background for background oriented schlieren (BOS), and image processing techniques of mark points in videogrammetry measurement (VM) are also employed to break the limits of cross-correlation in existing BOS. The expressions for computing refraction angle and displacement of nonparallel beams are derived. The fields of optical path difference (OPD) and refraction displacement when the beams from the small circle points to the center of the camera is crossing the flow are accurately calculated based on VM collinear equations. The measuring data on flow over the cavities in FL-21 wind tunnel demonstrates that the OPD differences no more than 1 μm and refraction angle about 1 μrad can be perceived distinctly, and the structures of waves/vortices/shear layer are quantified. The method proposed can provide a new way to measure aero-optic effects and visualize the complex flows. With simple optical system and no expensive coherent sources, the method has great application potential.

Key words:  aero-optics;    videogrammetry measurement;    flow visualization;    schlieren;    wind tunnel test;    imaging measurement;
收稿日期:  2016-11-24      修回日期:  2017-01-18           出版日期:  2017-08-15      发布日期:  2017-02-28      期的出版日期:  2017-08-15
ZTFLH:  V211.7  
基金资助: 

国家自然科学基金(51475453,11472297)

通讯作者:  张征宇,E-mail:zzyxjd@163.com    E-mail:  zzyxjd@163.com
引用本文:    
张征宇, 王显圣, 黄叙辉, 周润, 茆骥. 高速复杂流动结构的视频测量[J]. 航空学报, 2017, 38(8): 120989-120989.
ZHANG Zhengyu, WANG Xiansheng, HUANG Xuhui, ZHOU Run, MAO Ji. Videogrammetry measurement for high-speed complex flow structures. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(8): 120989-120989.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2017.120989  或          http://hkxb.buaa.edu.cn/CN/Y2017/V38/I8/120989

[1] MERRICK J D, REEDER M F. Cavity-store interaction under supersonic free stream conditions:AIAA-2015-3017[R]. Reston, VA:AIAA, 2015.
[2] 吴继飞. 内埋武器舱系统气动特性研究[D]. 绵阳:中国空气动力研究与发展中心, 2012. WU J F. Investigation on aerodynamic characteristics of internal weapons bay system[D]. Mianyang:China Aerodynamics Research and Development Center, 2012(in Chinese).
[3] 宋文成, 李玉军, 冯强.武器舱气动噪声主动流动控制技术风洞试验研究[J]. 空气动力学学报, 2016, 34(1):33-39. SONG W C, LI Y J, FENG Q. Wind tunnel test research on weapon bay cavity active flow control for acoustic[J]. Acta Aerodynamica Sinica, 2016, 34(1):33-39(in Chinese).
[4] MORTON M. Certification of the F-22 advanced tactical fighter for high cycle and sonic fatigue:AIAA-2007-1766[R]. Reston, VA:AIAA, 2007.
[5] SARPOTDAR S, PANICKAR P, RAMAN G. Cavity tone suppression using a rod in cross flow investigation of shear layer stability mechanism:AIAA-2009-0700[R]. Reston, VA:AIAA, 2009.
[6] HANDA T, MIYACHI H, KAKUNO H, et al. Modeling of a feedback mechanism in supersonic deep-cavity flows[J]. AIAA Journal, 2015, 53(2):420-425.
[7] HANDA T, MIYACHI H, KAKUNO H, et al. Generation and propagation of pressure waves in supersonic deep-cavity flows[J]. Experiments in Fluids, 2012, 53(6):1855-1866.
[8] SCHMIT R F, SEMMELMAYER F, HAVERKAMP M, et al. Fourier analysis of high speed shadowgraph images around a Mach 1.5 cavity flow field:AIAA-2011-3961[R]. Reston, VA:AIAA, 2011.
[9] MOON S J, GAI S L, KLEINE H H, et al. Supersonic flow over straight shallow cavities including leading and trailing edge modifications:AIAA-2010-4687[R]. Reston, VA:AIAA, 2010.
[10] KÄHLER C J, ASTARITA T, VLACHOS P P, et al. Main results of the 4th international PIV challenge[J]. Experiments in Fluids, 2016, 57(6):97.
[11] 孟晟, 杨臧健, 王明晓, 等. 纹影定量化在火焰温度测量中的应用[J]. 实验流体力学, 2015, 29(4):65-69. MENG S, YANG Z J, WANG M X, et al. Application of quantitative schlieren method in flame temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4):65-69(in Chinese).
[12] BAUKNECHT A, MERZ C B, RAFFEL M. Blade-tip vortex detection in maneuvering flight using the background-oriented schlieren technique[J]. Journal of Aircraft, 2014, 51(6):2005-2014.
[13] BATHEL B F, BORG S E, JONES S, et al. Development of background-oriented schlieren for NASA Langley Research Center ground test facilities:AIAA-2015-1691[R]. Reston, VA:AIAA, 2015.
[14] MIZUKAKI T, BORG S, DANEHY P M, et al. Background-oriented schlieren for large-scale and high-speed aerodynamic phenomena:AIAA-2015-1692[R]. Reston, VA:AIAA, 2015.
[15] 张天天, 易仕和, 朱杨柱, 等. 基于背景纹影波前传感技术的气动光学波前重构与校正[J]. 物理学报, 2015, 64(8):084201. ZHANG T T, YI S H, ZHU Y Z, et al. Reconstruction and calibration on aero-optical wavefront aberration based on background oriented schlieren based wavefront sensing[J]. Acta Physica Sinica, 2015, 64(8):084201(in Chinese).
[16] AKATSUKA J, NAGAI S. Flow visualization by a simplified BOS technique:AIAA-2011-3653[R]. Reston, VA:AIAA, 2011.
[17] 吕小亮. 背景纹影技术的温度场测量[D]. 杭州:浙江大学, 2011:23-25. LÜ X L. Temperature measurement based on background oriented schlieren[D]. Hangzhou:Zhejiang University, 2011:23-25(in Chinese).
[18] 张征宇, 黄叙辉, 尹疆, 等. 风洞试验中的视频测量技术现状与应用综述[J]. 空气动力学学报, 2016, 34(1):70-79. ZHANG Z Y, HUANG X H, YIN J, et al. Research status and application of videogrammetric measurement techniques for wind tunnel testing[J]. Acta Aerodynamica Sinica, 2016, 34(1):70-79(in Chinese).
[19] 赵涛, 张征宇, 王水亮, 等. 大幅面气动光学波前畸变场测量与重构[J]. 光学学报, 2013, 33(10):1012003. ZHAO T, ZHANG Z Y, WANG S L, et al. Measurement and reconstruction for large aero-optics wavefront distortion field[J]. Acta Optica Sinica, 2013, 33(10):1012003(in Chinese).
[20] 张征宇, 黄叙辉, 尹疆, 等. 高速风洞试验中的视频测量技术进展[J].实验流体力学, 2015, 29(2):1-7. ZHANG Z Y, HUANG X H, YIN J, et al. Progress of videogrammetric measurement techniques for high speed wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2):1-7(in Chinese).
[21] LIU T S, BURNER A W, JONES T W, et al. Photogrammetric techniques for aerospace applications[J]. Progress in Aerospace Sciences, 2012, 54(1):1-58.
[22] 黄桂平. 数字近景工业摄影测量关键技术研究与应用[D]. 天津:天津大学, 2005:54-59. HUANG G P. Study on the key technologies of digital close range industrial photogrammetry and applications[D]. Tianjin:Tianjin University, 2005:54-59(in Chinese).
[23] 罗川, 张征宇, 孙岩, 等. 模型变形视频测量的相机位置坐标与姿态角确定[J]. 实验流体力学, 2010, 24(6):88-91. LUO C, ZHANG Z Y, SUN Y, et al. Exterior orientation for videogrammetric model deformation measurement[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(6):88-91(in Chinese).
[24] 张征宇, 罗川, 孙岩, 等. 振动环境中相机位置坐标与姿态角解算的试验研究[J]. 实验流体力学, 2011, 25(3):56-59. ZHANG Z Y, LUO C, SUN Y, et al. Experimental investigation on exterior orientation in vibration environment[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):56-59(in Chinese).
[25] NEALE W T, HESSEL D, TERPSTRA T. Photogrammetric measurement error associated with lens distortion:SAE Technical Paper 2011-01-0286[R]. Warrendale:SAE International, 2011.
[26] 张征宇, 黄诗捷, 罗川, 等. 基于共面条件的摄像机非线性畸变自校正[J]. 光学学报, 2012, 32(1):0115002. ZHANG Z Y, HUANG S J, LUO C, et al. Nonlinear distortion correction of camera based on coplanar condition equations[J]. Acta Optica Sinica, 2012, 32(1):0115002(in Chinese).
[27] 张征宇, 朱龙, 黄叙辉, 等. 基于前方交会的5点相对定向[J]. 光学学报, 2015, 35(1):0115001. ZHANG Z Y, ZHU L, HUANG X H, et al. Five-point relative orientation based on forward intersection[J]. Acta Optica Sinica, 2015, 35(1):0115001(in Chinese).

[1] 王建锋, 卜忱, 谭浩. 基于液压驱动的动态试验控制系统设计[J]. 航空学报, 2017, 38(S1): 721521-721521.
[2] 雷桂林, 郑梅, 董威, 周志翔, 董奇. 航空发动机进气支板电热防冰试验[J]. 航空学报, 2017, 38(8): 121066-121066.
[3] 王显圣, 杨党国, 刘俊, 施傲, 周方奇, 吕彬彬. 弹性空腔流致噪声/结构振动特性试验[J]. 航空学报, 2017, 38(7): 120873-120873.
[4] 曾宪昂, 蒲利东, 李俊杰, 谭申刚, 谢怀强. 基于超静定配平的机动载荷控制风洞试验[J]. 航空学报, 2017, 38(5): 120596-120596.
[5] 王继明, 刘亦鹏. 民机风洞试验半模垫板高度对气动特性的影响[J]. 航空学报, 2017, 38(5): 120429-120429.
[6] 张铮, 陈仁良. 倾转旋翼机旋翼/机翼气动干扰理论与试验[J]. 航空学报, 2017, 38(3): 120196-120196.
[7] 李岩, 王绍龙, 易贤, 周志宏, 郭龙. 绕轴旋转圆柱结冰特性结冰风洞试验[J]. 航空学报, 2017, 38(2): 520693-520703.
[8] 冀洋锋, 林麒, 胡正红, 彭苗娇, 王宇奇. 基于绳系并联机器人支撑系统的SDM动导数试验可行性研究[J]. 航空学报, 2017, 38(11): 121330-121330.
[9] 王泽江, 宋文萍, 曾学军, 杨波, 孙鹏, 唐小伟. 高超声速通气模型直接测力试验[J]. 航空学报, 2017, 38(10): 121100-121100.
[10] 王晓冰, 赵忠良, 李浩, 达兴亚, 陶洋. 窄条翼导弹俯仰机动中滚转失稳及其控制过程[J]. 航空学报, 2016, 37(8): 2517-2524.
[11] 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8): 2331-2347.
[12] 刘春明, 赵志军, 卜忱, 王建锋, 牟伟强. 低速风洞双自由度大幅振荡试验技术[J]. 航空学报, 2016, 37(8): 2417-2425.
[13] 刘志涛, 孙海生. 一种提高风洞动态试验数据质量的模型姿态控制和测量技术[J]. 航空学报, 2016, 37(8): 2426-2435.
[14] 李其畅, 赵忠良, 杨海泳, 马上, 李玉平, 刘维亮, 史晓军, 王晓冰. 模型大迎角高速动态特性与数据精度分析[J]. 航空学报, 2016, 37(8): 2594-2602.
[15] 张鑫, 黄勇, 王勋年, 王万波, 唐坤, 李华星. 超临界机翼介质阻挡放电等离子体流动控制[J]. 航空学报, 2016, 37(6): 1733-1742.
[1] Wan Min;Zhang Weihong;Tan Gang. Efficient Simulation Model of Material Removal in Peripheral Milling of Thin-walled Workpiece[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(5): 1247 -1251 .
[2] Rong Yisheng;Liu Weiqiang. Influence of Opposing Jet on Flow Field and Aerodynamic Heating at Nose of a Reentry Vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1552 -1557 .
[3] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 .
[4] Li Pan;Chen Renliang. Rotor Tip Vortex Model and Its Effect on Free-vortex Wake Analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1517 -1523 .
[5] TAN Hui-jun;GUO Rong-wei. Wind Tunnel Tests of Hypersonic Inlets for Ramjet Modules of  Ramjet scramjet Combined Engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 783 -790 .
[6] Lei Shihao;Jiang Zimao. GUIDELINES OF AIRCRAFT CABIN ENVIRONMENT ACOUSTICS DESIGN[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(6): 716 -719 .
[7] WANG Xiao-lu;ZHU Zi-qiang. Hybrid Optimization Design of High Performance Unmanned Aerial Vehicle Airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 839 -844 .
[8] Cao Xiaorui;Dong Chaoyang;Wang Qing;Chen Yu. Radome Slope Estimation Using Multiple Model Based on EKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1608 -1613 .
[9] Li Guomin;Liu Jun;Sha Jiangbo. Effect of Si and Ti on Microstructures and Mechanical Properties of Nb-6Hf-4Zr-2B Alloy at Room Temperature[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1688 -1694 .
[10] Liang Zhi-yong;Zhang Zhou-guang. Song Huang-Cheng. THE STATISTICAL ANALYSIS AND CALCULATING MODEL OF TENSILE PROPERTIES OF SINGLE AND HYBRID COMPOSITES[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(5): 330 -335 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   

版权所有 © 航空学报编辑部  
地址:北京市海淀区北四环中路辅路238号 邮政编码:100083
电话:010-82317058, 82318016   E-mail:hkxb@buaa.edu.cn
为了更好的浏览网站,建议使用IE或IE内核浏览器