Please wait a minute...
航空学报
  首页 | 关于本刊 | 编 委 会 | 最新录用 | 过刊浏览 | 期刊征订 | 下载中心 | 广告服务 | 博客 | 论坛 | 联系我们 | English
航空学报  2017, Vol. 38 Issue (8): 120876-120876    DOI: 10.7527/S1000-6893.2016.120876
  流体力学与飞行力学 本期目录 | 过刊浏览 | 高级检索 |
引入DMD方法研究有/无控气流分离的动态结构
洪树立1,2, 黄国平1,2
1. 南京航空航天大学 能源与动力学院, 南京 210016;
2. 南京航空航天大学 江苏省航空动力系统重点实验室, 南京 210016
Introducing DMD method to study dynamic structures of flow separation with and without control
HONG Shuli1,2, HUANG Guoping1,2
1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics, Naning 210016, China
下载:  PDF(2711KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

为分析非定常流动控制技术抑制分离流的机理,对弯曲扩压通道的试验模型进行了数值模拟,针对扩压通道在无控和采用最佳射流频率状态下的计算结果引入了动力模态分解(DMD)技术进行分析。通过DMD技术能够将包含时空信息的扩压通道复杂流场进行分解,捕获流场包含的动力信息和对应的拟序流动结构。将无控和有控流场分解的结果进行对比分析后表明:采用有效激励措施时,和脱落涡频率一致的涡系对流场的影响更加突显,流场整体上表现得更加有序;非定常控制抑制了一部分涡的增长,使得各模态整体上更加稳定;而有控流场占主导地位的涡系结构相比无控流场较为有序,且对主流区未形成明显的直接影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
洪树立
黄国平
关键词:  流动分离非定常流动控制拟序结构动力模态分解(DMD);    
Abstract: 

To analyze the mechanism of depressing flow separation with unsteady flow control technology, a numerical simulation for the experimental model of the divergent channel is carried out. Dynamic mode decomposition (DMD) technology is adopted to study the flow field of the curved divergent channel with and without pulsed jet control. With DMD technology, the complex flow field of the divergent channel containing spatial and temporal information can be decomposed hierarchically, and dynamical information as well as spatial coherent structure corresponding to the vortex can be captured and rendered. A comparison of the decomposed flow fields with and without control shows that with effective excitation, the coherent structure with the frequency approximating the frequency of the shedding vortex becomes more dominant in the initial flow field, and the overall flow field turns out be to more ordered. Some coherent structures, decomposed from flow field without control, are suppressed to make all modes more steady. The dominant structure of the controlled flow field has no obvious influence on the main flow.

Key words:  flow separation;    unsteady;    flow control;    coherent structure;    dynamic mode decomposition (DMD);
收稿日期:  2016-10-21      修回日期:  2016-11-18           出版日期:  2017-08-15      发布日期:  2017-01-11      期的出版日期:  2017-08-15
ZTFLH:  V231.3  
基金资助: 

国家自然科学基金(51176072)

通讯作者:  洪树立,E-mail:hong_0815@163.com    E-mail:  hong_0815@163.com
引用本文:    
洪树立, 黄国平. 引入DMD方法研究有/无控气流分离的动态结构[J]. 航空学报, 2017, 38(8): 120876-120876.
HONG Shuli, HUANG Guoping. Introducing DMD method to study dynamic structures of flow separation with and without control. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(8): 120876-120876.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2016.120876  或          http://hkxb.buaa.edu.cn/CN/Y2017/V38/I8/120876

[1] RIVIR R B, SONDERGAARD R, BONS J P, et al. Passive and active control of separation in gas turbines:AIAA-2000-2235[R]. Reston, VA:AIAA, 2000.
[2] HERGT A, MEYER R, ENGEL K. Experimental investigation of flow control in compressor cascades:GT-2006-90415[R]. New York:ASME, 2006.
[3] GREENBLATT D, WYGNANSKI I J. The control of flow separation by periodic excitation[J]. Progress in Aerospace Sciences, 2000, 36(7):487-545.
[4] WYGNANSKI I J. The variables affecting the control of separation by periodic excitation:AIAA-2004-2505[R]. Reston, VA:AIAA, 2004.
[5] SEⅡCHI I, MASATO F, KENICHIRO I, et al. Vortical flow structure and loss generation process in a transonic centrifugal compressor impeller:GT-2007-27791[R]. New York:ASME, 2007.
[6] HASHMI S, QIAO W Y, CHEN P P. Prediction of hub corner stall characteristics of a highly loaded low speed single stage fan[J]. Journal of Thermal Science, 2011, 20(2):106-114.
[7] ADRIAN R J, MEINHART C D, TOMKINS C D. Vortex organization in the outer region of turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 422:1-54.
[8] DENNIS D J C, NICKELS T B. Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1:Vortex packets[J]. Journal of Fluid Mechanics, 2011, 673:180-217.
[9] FENG L H, WANG J J, PAN C. Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control[J]. Physics of Fluid, 2011, 23:014106.
[10] 朱剑锋, 黄国平, 傅鑫, 等. 基于POD方法的弯曲扩压通道分离流控制的时空特性分析[J]. 航空学报, 2014, 35(4):921-932. ZHU J F, HUANG G P, FU X, et al. Spatiotemporal characteristics analysis for controlling flow separation in divergent curved channels with POD method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4):921-932(in Chinese).
[11] MEZI? I. Analysis of fluid flows via spectral properties of Koopman operator[J]. Annual Review of Fluid Mechanics, 2013, 45(1):357-378.
[12] ZHANG W, WANG Y, QIAN Y H. Stability analysis for flow past a cylinder via lattice Boltzmann method and dynamic mode decomposition[J]. Chinese Physics B, 2015, 24(6):378-384.
[13] ROWLEY C W, MEZI? I, BAGHERI S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641:115-127.
[14] SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656:5-28.
[15] SCHMID P J. Application of the dynamic mode decomposition to experimental[J]. Experiments in Fluids, 2011, 50(4):1123-1130.
[16] ZHANG Q S, LIU Y Z, WANG S F. The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition[J]. Journal of Fluids and Structures, 2014, 49:53-72.
[17] SEENA A, SUNG H J. Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations[J]. International Journal of Heat & Fluid Flow, 2011, 32(6):1098-1110.
[18] NASTASE I, MEALEM A, EI HASSAN M. Image processing analysis of vortex dynamics of lobed jets from three-dimensional diffusers[J]. Fluid Dynamics Research, 2011, 43:065502.
[19] 胡海岩. 机械振动基础[M]. 哈尔滨:哈尔滨工业大学出版社, 2004. HU H Y. Mechanical vibration foundation[M]. Harbin:Harbin Institute of Technology Press, 2004(in Chinese).
[20] GREENBAUM A. Iterative methods for solving linear system[M]. Philadelphia:SIAM, 1997.
[21] SCHMID P J, LI L, JUNIPER M P, et al. Applications of the dynamic mode decomposition[J]. Theoretical and Computational Fluid Dynamics, 2011, 25(1):249-259.
[22] 朱剑锋, 黄国平, 傅鑫, 等. 一种控制气流分离的无源微脉冲射流技术研究[J]. 航空学报, 2013, 34(8):1757-1767. ZHU J F, HUANG G P, FU X, et al. Investigation of technology for controlling flow separation by micro-pulsed-jet without external device[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1757-1767(in Chinese).
[23] 朱剑锋, 黄国平, 傅鑫, 等. 脉冲射流控制弯曲扩压管道流动分离的特点[J]. 航空动力学报, 2015, 30(12):2942-2948. ZHU J F, HUANG G P, FU X, et al. Characteristic of controlling flow separation in divergent curved channels by pulsed jet[J]. Journal of Aerospace Power, 2015, 30(12):2942-2948(in Chinese).
[24] 潘翀, 陈皇, 王晋军. 复杂流场的动力学模态分解[C]//第八届全国实验流体力学学术会议. 北京:中国学术期刊电子出版社, 2010:77-82. PAN C, CHEN H, WANG J J. Dynamic modal decomposition of complex flow field[C]//The Eighth National Conference on Experimental Fluid Mechanics. Beijing:China Academic Journal Electronic Publishing House, 2010:77-82(in Chinese).

[1] 杨一雄, 杨体浩, 白俊强, 史亚云, 卢磊. HLFC后掠翼优化设计的若干问题[J]. 航空学报, 2018, 39(1): 121448-121448.
[2] 李冠雄, 马东立, 杨穆清, 郭阳. 低雷诺数翼型局部振动非定常气动特性[J]. 航空学报, 2018, 39(1): 121427-121427.
[3] 付磊. 跨声速压气机转子旋转失速现象的非定常模拟[J]. 航空学报, 2017, 38(S1): 721524-721524.
[4] 吴艳辉, 王博, 付裕, 刘军. 轴流压气机角区分离的研究进展[J]. 航空学报, 2017, 38(9): 520974-520974.
[5] 韩戈, 阳诚武, 李紫良, 赵胜丰, 卢新根. 离心压气机管式扩压器研究进展及评述[J]. 航空学报, 2017, 38(9): 520949-520949.
[6] 贡伊明, 刘战合, 刘溢浪, 张伟伟. 时间谱方法中的高效GMRES算法[J]. 航空学报, 2017, 38(7): 120894-120894.
[7] 姜裕标, 王万波, 常智强, 黄勇. 定常吹气对无缝襟翼翼型地面效应影响的数值模拟[J]. 航空学报, 2017, 38(6): 120751-120751.
[8] 许和勇, 邢世龙, 叶正寅, 马明生. 基于充气前缘技术的旋翼翼型动态失速抑制[J]. 航空学报, 2017, 38(6): 120799-120799.
[9] 李健, 张华, 吴星钢. 利用上游槽道对角区马蹄涡的控制[J]. 航空学报, 2017, 38(6): 120796-120796.
[10] 王梓伊, 张伟伟. 适用于参数可调结构的非定常气动力降阶建模方法[J]. 航空学报, 2017, 38(6): 220829-220829.
[11] 刘琛源, 刘火星. 波转子非定常泄漏流动机理[J]. 航空学报, 2017, 38(5): 120606-120606.
[12] 张振辉, 李栋, 杨茵. 基于前缘缝翼微型后缘装置的多段翼型被动流动控制[J]. 航空学报, 2017, 38(5): 120650-120650.
[13] 王红波, 祝小平, 周洲, 许晓平. 基于非定常面元/黏性涡粒子法的低雷诺数滑流气动干扰[J]. 航空学报, 2017, 38(4): 120412-120412.
[14] 刘强, 刘强, 白鹏, 李锋. 不同雷诺数下翼型气动特性及层流分离现象演化[J]. 航空学报, 2017, 38(4): 120338-120338.
[15] 马奕扬, 招启军, 赵国庆. 基于后缘小翼的旋翼翼型动态失速控制分析[J]. 航空学报, 2017, 38(3): 120312-120312.
[1] Wan Min;Zhang Weihong;Tan Gang. Efficient Simulation Model of Material Removal in Peripheral Milling of Thin-walled Workpiece[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(5): 1247 -1251 .
[2] Rong Yisheng;Liu Weiqiang. Influence of Opposing Jet on Flow Field and Aerodynamic Heating at Nose of a Reentry Vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1552 -1557 .
[3] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 .
[4] Li Pan;Chen Renliang. Rotor Tip Vortex Model and Its Effect on Free-vortex Wake Analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1517 -1523 .
[5] TAN Hui-jun;GUO Rong-wei. Wind Tunnel Tests of Hypersonic Inlets for Ramjet Modules of  Ramjet scramjet Combined Engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 783 -790 .
[6] Lei Shihao;Jiang Zimao. GUIDELINES OF AIRCRAFT CABIN ENVIRONMENT ACOUSTICS DESIGN[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(6): 716 -719 .
[7] WANG Xiao-lu;ZHU Zi-qiang. Hybrid Optimization Design of High Performance Unmanned Aerial Vehicle Airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 839 -844 .
[8] Cao Xiaorui;Dong Chaoyang;Wang Qing;Chen Yu. Radome Slope Estimation Using Multiple Model Based on EKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1608 -1613 .
[9] Li Guomin;Liu Jun;Sha Jiangbo. Effect of Si and Ti on Microstructures and Mechanical Properties of Nb-6Hf-4Zr-2B Alloy at Room Temperature[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1688 -1694 .
[10] Liang Zhi-yong;Zhang Zhou-guang. Song Huang-Cheng. THE STATISTICAL ANALYSIS AND CALCULATING MODEL OF TENSILE PROPERTIES OF SINGLE AND HYBRID COMPOSITES[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(5): 330 -335 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   

版权所有 © 航空学报编辑部  
地址:北京市海淀区北四环中路辅路238号 邮政编码:100083
电话:010-82317058, 82318016   E-mail:hkxb@buaa.edu.cn
为了更好的浏览网站,建议使用IE或IE内核浏览器