Please wait a minute...
航空学报
  首页 | 关于本刊 | 编 委 会 | 最新录用 | 过刊浏览 | 期刊征订 | 下载中心 | 广告服务 | 博客 | 论坛 | 联系我们 | English
航空学报  2017, Vol. 38 Issue (8): 320977-320977    DOI: 10.7527/S1000-6893.2016.320977
  电子电气工程与控制 本期目录 | 过刊浏览 | 高级检索 |
基于IDMS的航空发动机砂尘吸入物定量监测
孙见忠, 刘信超, 刘若晨, 康远荣, 殷逸冰, 左洪福
南京航空航天大学 民航学院, 南京 210016
IDMS based method for quantitative monitoring of aero-engine ingested airborne sands
SUN Jianzhong, LIU Xinchao, LIU Ruochen, KANG Yuanrong, YIN Yibing, ZUO Hongfu
College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  PDF(3731KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

针对航空发动机砂尘吸入物定量监测的问题,提出了基于进气监测系统(IDMS)的砂尘吸入物质量浓度监测及总量估算方法。借助ANSYS电磁场仿真软件建立了IDMS系统有限元模型,实现对发动机实际工况下的砂尘吸入物的静电场模拟,研究确定砂尘吸入物质量浓度、荷质比等宏观参数与IDMS监测信号的关系。研究发现所建立的IDMS有限元模型获得的传感器特性与前期试验获得的结论一致,静电信号随吸入颗粒物浓度的变化与试验中实测信号的变化趋势一致,为基于IDMS信号的砂尘吸入物定量监测和评估提供理论依据。仿真试验表明,荷质比一定的情况下IDMS感应电荷量与砂尘浓度呈线性增长关系,通过IDMS感应电荷信号可实时监测发动机砂尘吸入物质量浓度,并可进一步累积估算一段时间内砂尘吸入物总量,最终总量估计误差不超过4%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙见忠
刘信超
刘若晨
康远荣
殷逸冰
左洪福
关键词:  航空发动机砂尘吸入物静电监测有限元分析荷质比;    
Abstract: 

In order to monitor the ingested airborne sands inside the aero-engine quantitatively, this paper builds the simulation model based on ingested debris monitoring system (IDMS) to analyze different ingested airborne sand distributions and also proposes the method for estimating the total amount of ingested airborne sands, based on the IDMS signal. IDMS model is developed in finite element software ANSYS to simulate the electrostatic field of ingested airborne sands with electrostatic charges. The relationship between the IDMS monitoring signals and the parameters of the ingested airborne sands is studied, such as mass concentrations and charge-to-mass ratio. The IDMS sensing characteristic derived from the finite element model proposed is found to be consistent with the results of previous experiments. The trend of electrostatic signals from both simulation and experiment are the same, laying the basis for the monitoring of the mass concentrations of the ingested airborne sands as well as the estimation of total amount. This simulation study shows that the relationship between induced charges of IDMS and mass concentration is linear, given a constant charge-to-mass ratio. The induced charges along with different ingested airborne sand distributions can be extracted from real-time monitoring system. Therefore, based on the measured charge signals using the IDMS, the mass concentrations of the ingested airborne sands can be recorded on-line, and further the total amount of airborne sands ingested during a specified interval can be estimated with an estimation error no greater than 4%.

Key words:  aero-engine;    ingested airborne sand;    electrostatic monitoring;    finite element analysis;    charge-to-mass ratio;
收稿日期:  2016-11-24      修回日期:  2016-12-07           出版日期:  2017-08-15      发布日期:  2016-12-28      期的出版日期:  2017-08-15
ZTFLH:  V231.25  
基金资助: 

国家自然科学基金(61403198);江苏省自然科学基金(BK20140827);航空科学基金(2014ZB52020)

通讯作者:  孙见忠,E-mail:sunjianzhong@nuaa.edu.cn    E-mail:  sunjianzhong@nuaa.edu.cn
引用本文:    
孙见忠, 刘信超, 刘若晨, 康远荣, 殷逸冰, 左洪福. 基于IDMS的航空发动机砂尘吸入物定量监测[J]. 航空学报, 2017, 38(8): 320977-320977.
SUN Jianzhong, LIU Xinchao, LIU Ruochen, KANG Yuanrong, YIN Yibing, ZUO Hongfu. IDMS based method for quantitative monitoring of aero-engine ingested airborne sands. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(8): 320977-320977.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2016.320977  或          http://hkxb.buaa.edu.cn/CN/Y2017/V38/I8/320977

[1] 章伟, 郭徽. 浅谈灰尘对直升机动力装置性能和可靠性的影响[C]//湖南国防科技论坛. 湖南:湖南省兵工协会, 2009:451-454. ZHANG W, GUO H. Influence of dust on the performance and reliability of helicopter power plant[C]//Hunan National Defence Science and Technology Forum. Hunan:Hunan Ordnance Association, 2009:451-454(in Chinese).
[2] 国防科学技术工业委员会. 航空涡喷涡扇发动机吞砂试验:GJB 2046-94[S]. 北京:中国航空综合技术研究所, 1994. Committee of Defense Industry of Science and Technology. Swallowing sands tests of turbojet and turbofan engines:GJB 2046-94[S]. Beijing:AVIC China Aero-Polytechnology Establishment, 1994(in Chinese).
[3] 中国人民解放军总装备部. 军用装备实验室环境试验方法第12部分:砂尘试验:GJB 150.12A-2009[S]. 北京:总装备部军标出版发行部, 2009. General Armament Department of PLA. 12th part of environmental test methods for military equipment:Sand dust test:GJB 150.12A-2009[S]. Beijing:General Armament Department Military Label Publishing Department, 2009(in Chinese).
[4] GHENAIET A, ELDER R L, TAN S C. Particles trajectories through an axial fan and performance degradation due to sand ingestion:2001-GT-0497[R]. New York:ASME, 2001.
[5] DUNN M G, PADOVA C, MOLLER J E, et al. Performance deterioration of a turbofan and a turbojet engine upon exposure to a dust environment[J]. Journal of Engineering for Gas Turbines & Power, 1987, 109(3):336-343.
[6] HAMED A A. Turbine blade surface deterioration by erosion[J]. Journal of Turbomachinery, 2004, 127(3):445-452.
[7] WALSH W S, THOLE K A, JOE C. Effects of sand ingestion on the blockage of film-cooling holes[C]//Turbomachinery Technical Conference and Exposition 2006. New York:ASME, 2006:81-90.
[8] CARDWELL N D, THOLE K A, BURD S W. Investigation of sand blocking within impingement and film-cooling holes:2008-GT-51351[R]. New York:ASME, 2001.
[9] OGIRIKI E, THANK-GOD I, GOWON S. Effect of fouling, thermal barrier coating degradation and film cooling holes blockage on gas turbine engine creep life[J]. Procedia Cirp, 2015, 38:228-233.
[10] SCALA S, KONRAD M, MASON R, et al. Sensor requirements to monitor the real time performance of a gas turbine engine undergoing compressor blade erosion:AIAA-2004-3548[R]. Reston, VA:AIAA, 2004.
[11] POWRIE H E G, FISHER C E. Monitoring of foreign objects ingested into the intake of a jet engine[C]//International Conference on Condition Monitoring. Swansea:University of Wales, 1999:175-190.
[12] POWRIE H E G, FISHER C E. Engine health monitoring:Towards total prognostics[C]//Aerospace Conference. Piscataway, NJ:IEEE Press, 1999:11-20.
[13] 文振华, 左洪福, 李耀华. 气路颗粒静电监测技术及实验[J]. 航空动力学报, 2008, 23(12):2321-2326. WEN Z H, ZUO H F, LI Y H. Gas path debris electrostatic monitoring technology and experiment[J]. Journal of Aerospace Power, 2008, 23(12):2321-2326(in Chinese).
[14] 殷逸冰, 左洪福, 冒慧杰, 等. 航空发动机进气道静电传感器空间模型解析及感应信号影响因素实验分析[J]. 仪器仪表学报, 2015, 36(4):795-803. YIN Y B, ZUO H F, MAO H J, et al. Spatial analysis of inlet electrostatic sensor and experimental study on influence factors of charge-induced signal[J]. Journal of Instrument and Meter, 2015, 36(4):795-803(in Chinese).
[15] 殷逸冰, 左洪福, 文振华, 等. 航空发动机吸入颗粒物静电感应特性的模拟实验及分析[J]. 航空学报, 2015, 36(2):691-702. YIN Y B, ZUO H F, WEN Z H, et al.Electrostatic induction characteristics of aeroengine inhaled particles:Simulated experiment analysis[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):691-702(in Chinese).
[16] 冒慧杰, 左洪福, 黄文杰, 等. 航空新型静电传感器建模与标定实验[J]. 航空学报, 2016, 37(7):2242-2250. MAO H J, ZUO H F, HUANG W J, et al. Mathematical modeling and calibration experiment of new electrostatic sensor in aviation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2242-2250(in Chinese).
[17] LIU R C, ZUO H F, SUN J Z, et al. Simulation of electrostatic oil line sensing and validation using experimental results[J]. Tribology International, 2017, 105:15-26.
[18] 李耀华, 左洪福, 文振华. 航空发动机气路颗粒静电监测技术模拟实验[J]. 航空学报, 2009, 30(4):604-608. LI Y H, ZUO H F, WEN Z H. Simulated experiment of aircraft engine gas path debris monitoring technology[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4):604-608(in Chinese).
[19] 中国国家标准化管理委员会. 环境条件分类·自然环境条件·尘、沙、盐雾:GB/T 4797.2013-95[S]. 北京:中国标准出版社, 2013. China National Standardization Administration Committee. Classification of environmental conditions-natural conditions-dust, sand, salt fog:GB/T 4797.2013-95[S]. Beijing:China Standard Press, 2013(in Chinese).
[20] 郑晓静, 黄宁, 周又和. 风沙运动的沙粒带电机理及其影响的研究进展[J]. 力学进展, 2004, 34(1):77-86. ZHENG X J, HUANG N, ZHOU Y H. Advances in investigation on electrification of wind-blown sands and its effects[J]. Advances in Mechanics, 2004, 34(1):77-86(in Chinese).
[21] GREELEY R, LEACH R. A preliminary assessment of the effects of electrostatics on aeolian processes:NASA TM-79729-236[R].Washington, D.C:NASA, 1978.
[22] ZHENG X J, HUANG N, ZHOU Y. Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D10):1-9.
[23] 黄宁, 郑晓静. 风沙流中沙粒带电现象的实验测试[J]. 科学通报, 2000, 45(20):2232-2235. HUANG N, ZHENG X J. Experimental study on charged phenomena of sand grains in wind blown sand[J]. Chinese Science Bulletin, 2000, 45(20):2232-2235(in Chinese).
[24] SCHMIDT D S, SCHMIDT R A, DENT J D. Electrostatic force on salting sand[J]. Journal of Geophysical Research:Atmospheres, 1998, 103(D8):8997-9001.
[25] JONES A D, JOHNSTON A M, VINCENT J H. The measurement of electric charge on airborne dusts in quarries and mines[J]. Staub Reinhaltung Der Luft, 1985, 45(10):475-480.

[1] 胡剑平, 任国哲, 易军, 刘振侠, 吕亚国, 赵静宇. 轴承腔内壁与油膜换热的数值模拟与试验[J]. 航空学报, 2017, 38(9): 521013-521013.
[2] 赵璧, 宣益民. 航空发动机间冷器及回热器发展研究综述[J]. 航空学报, 2017, 38(9): 520934-520934.
[3] 雷桂林, 郑梅, 董威, 周志翔, 董奇. 航空发动机进气支板电热防冰试验[J]. 航空学报, 2017, 38(8): 121066-121066.
[4] 张军锋, 史耀耀, 蔺小军, 段继豪. 航空发动机叶片前后缘自由式砂带抛光技术[J]. 航空学报, 2017, 38(3): 420327-420327.
[5] 刘凯, 曹毅, 周睿, 葛姝翌, 丁锐. 二自由度平板折展柔性铰链的分析及优化[J]. 航空学报, 2017, 38(2): 420317-420326.
[6] 雷晓波, 张强, 文敏, 任瑞冬, 雷蒂远. 航空发动机安装节推力测量技术与试验[J]. 航空学报, 2017, 38(12): 121190-121190.
[7] 黄斌达, 周来水, 安鲁陵, 卫炜, 王小平, 卜庆奎. 工序模型驱动的航空发动机零件机加夹具变型设计方法[J]. 航空学报, 2017, 38(1): 420091-420091.
[8] 朱琳, 余音, 汪海. 复合材料曲板缺陷及安装误差对屈曲性能的影响[J]. 航空学报, 2016, 37(7): 2180-2188.
[9] 黄云, 肖贵坚, 邹莱. 整体叶盘抛光技术的研究现状及发展趋势[J]. 航空学报, 2016, 37(7): 2045-2064.
[10] 赵军, 刘宝杰. 跨声速多级压气机中的非定常流场频域分析[J]. 航空学报, 2016, 37(6): 1798-1808.
[11] 宋丹龙, 张开富, 钟衡, 李原. 层合板干涉螺接分层损伤及其临界干涉量[J]. 航空学报, 2016, 37(5): 1677-1688.
[12] 胡金海, 夏超, 彭靖波, 张驭, 任立通. 一种基于相邻模块化加权D-S的融合诊断方法[J]. 航空学报, 2016, 37(4): 1174-1183.
[13] 李连升, 邓楼楼, 梅志武, 吕政欣, 刘继红, 左富昌. 基于Monte Carlo的聚焦型X射线脉冲星望远镜多物理场耦合分析方法[J]. 航空学报, 2016, 37(4): 1249-1260.
[14] 王浩, 王立文, 王涛, 丁华鹏. 航空发动机损伤叶片再制造修复方法与实现[J]. 航空学报, 2016, 37(3): 1036-1048.
[15] 孙恒超, 陈国定, 王莉娜, 王菲. 轴承腔油滴含率及油滴相与空气能量传递分析[J]. 航空学报, 2016, 37(3): 1060-1073.
[1] Wan Min;Zhang Weihong;Tan Gang. Efficient Simulation Model of Material Removal in Peripheral Milling of Thin-walled Workpiece[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(5): 1247 -1251 .
[2] Rong Yisheng;Liu Weiqiang. Influence of Opposing Jet on Flow Field and Aerodynamic Heating at Nose of a Reentry Vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1552 -1557 .
[3] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 .
[4] Li Pan;Chen Renliang. Rotor Tip Vortex Model and Its Effect on Free-vortex Wake Analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1517 -1523 .
[5] TAN Hui-jun;GUO Rong-wei. Wind Tunnel Tests of Hypersonic Inlets for Ramjet Modules of  Ramjet scramjet Combined Engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 783 -790 .
[6] Lei Shihao;Jiang Zimao. GUIDELINES OF AIRCRAFT CABIN ENVIRONMENT ACOUSTICS DESIGN[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(6): 716 -719 .
[7] WANG Xiao-lu;ZHU Zi-qiang. Hybrid Optimization Design of High Performance Unmanned Aerial Vehicle Airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 839 -844 .
[8] Cao Xiaorui;Dong Chaoyang;Wang Qing;Chen Yu. Radome Slope Estimation Using Multiple Model Based on EKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1608 -1613 .
[9] Li Guomin;Liu Jun;Sha Jiangbo. Effect of Si and Ti on Microstructures and Mechanical Properties of Nb-6Hf-4Zr-2B Alloy at Room Temperature[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1688 -1694 .
[10] Liang Zhi-yong;Zhang Zhou-guang. Song Huang-Cheng. THE STATISTICAL ANALYSIS AND CALCULATING MODEL OF TENSILE PROPERTIES OF SINGLE AND HYBRID COMPOSITES[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(5): 330 -335 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   

版权所有 © 航空学报编辑部  
地址:北京市海淀区北四环中路辅路238号 邮政编码:100083
电话:010-82317058, 82318016   E-mail:hkxb@buaa.edu.cn
为了更好的浏览网站,建议使用IE或IE内核浏览器