航空学报 > 2017, Vol. 38 Issue (2): 520710-520718   doi: 10.7527/S1000-6893.2016.0278

液滴撞击超疏水表面的能量耗散机制

刘森云1, 沈一洲1,2, 朱春玲1, 陶杰2, 谢磊3   

  1. 1. 南京航空航天大学 航空宇航学院, 南京 210016;
    2. 南京航空航天大学 材料科学与技术学院, 南京 210016;
    3. 中航工业飞机股份有限公司研发中心 环控救生所, 汉中 723213
  • 收稿日期:2016-08-26 修回日期:2016-10-26 出版日期:2017-02-15 发布日期:2016-10-27
  • 通讯作者: 朱春玲,E-mail:clzhu@nuaa.edu.cn E-mail:clzhu@nuaa.edu.cn
  • 基金资助:

    国家“973”计划(2015CB755800);国家自然科学基金(11372335);博士后创新人才支持计划(BX201600073);江苏高校优势学科建设工程

Energy dissipation mechanism of droplets impacting superhydrophobic surfaces

LIU Senyun1, SHEN Yizhou1,2, ZHU Chunling1, TAO Jie2, XIE Lei3   

  1. 1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    3. Institute of Environment Controlling and Life Saving, AVIC Aviation Aircraft Co. Ltd. R & D Center, Hanzhong 723213, China
  • Received:2016-08-26 Revised:2016-10-26 Online:2017-02-15 Published:2016-10-27
  • Supported by:

    National Basic Research Program of China (2015CB755800); National Natural Science Foundation of China (11372335); National Postdoctoral Program for Innovative Talents (BX201600073); Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions

摘要:

针对飞机表面易结冰部位设计超疏水表面,可以大幅度减轻对高能耗防/除冰技术的依赖程度,进而提高飞机的燃油经济性。主要通过实验研究与数值模拟的手段,分析讨论了液滴撞击分级粗糙结构超疏水表面过程中的能量耗散机制。以Ti6Al4V为基体经过喷砂处理形成微米级粗糙结构,然后在1 mol/L的低浓度NaOH溶液中水热生长一层一维纳米线,构建出微/纳米复合粗糙结构并氟化修饰获得超疏水表面。通过场发射扫描电镜(FE-SEM)观察了微观形貌的变化规律,利用动态视频接触角测量仪表征试样表面液滴表观接触角与接触角滞后。基于气液两相流动界面追踪的复合Level set-VOF方法,实现了液滴撞击超疏水表面过程的数值模拟。采用高速摄像技术记录了撞击液滴在超疏水表面的运动过程,实验验证了模拟方法与铺展计算模型的正确性,并详细讨论了液滴运动过程中的能量耗散问题,分析表明液滴撞击过程中的能量耗散主要取决于超疏水表面的动态润湿特性和润湿界面模型。

关键词: 超疏水表面, 撞击液滴, 数值模拟, 能量耗散, 润湿界面模型

Abstract:

Designing superhydrophobic surfaces on the icing locations of aircrafts can greatly reduce the dependence on the traditional high energy-consumption anti/de-icing technologies, so as to improve the fuel efficiency of aircrafts. The aim of the present work is to analyze the energy dissipation mechanism of droplets impacting on the hierarchical superhydrophobic surface based on experiments and numerical simulations. Ti6Al4V as the substrate is sandblasted to construct the microscale rough structure, and then is put in the 1 mol/L NaOH solution to thermally growth a layer of nanowires, obtaining the superhydrophobicity after the modification. The morphologies are observed by field emission scanning electron microscope (FE-SEM), and the two main wetting parameters (apparent contact angle and contact angle hysteresis) on superhydrophobicity are characterized via a dynamic video contact angle meter. Based on the pursuant composite Level set-VOF numerical method of gas-liquid phase interface, the contact process of a droplet impacting superhydrophobic surfaces can be reproduced with a numerical calculation. Experimentally, a high-speed camera is also used to record the moving process of the impacting droplet on the superhydrophobic surface to verify the correctness of the numerical model. Discussion of the energy dissipation during the moving process of the droplet demonstrates that the energy dissipation depends mainly on the dynamic wetting properties of the superhydrophobic surface and the wetting interfacial model.

Key words: superhydrophobic surfaces, impact droplet, numerical simulation, energy dissipation, wetting interfacial model

中图分类号: