航空学报 > 2014, Vol. 35 Issue (12): 3273-3782   doi: 10.7527/S1000-6893.2014.0193

高压涡轮转子叶片内部气流组织方式研究

朱兴丹1, 谭晓茗1, 郭文2, 张靖周1, 王永明3   

  1. 1. 南京航空航天大学 能源与动力学院 江苏省航空动力系统重点实验室, 江苏 南京 210016;
    2. 中国燃气涡轮研究院, 四川 成都 610500;
    3. 贵州航空发动机研究所, 贵州 贵阳 550004
  • 收稿日期:2013-12-30 修回日期:2014-06-06 出版日期:2014-12-25 发布日期:2014-09-19
  • 通讯作者: 张靖周 男, 博士, 教授, 博士生导师.主要研究方向: 红外隐身、燃烧及强化传热等. Tel: 025-84895909 E-mail: zhangjz@nuaa.edu.cn E-mail:zhangjz@nuaa.edu.cn
  • 作者简介:朱兴丹 男, 博士研究生.主要研究方向: 航空发动机热端高温部件冷却及强化传热. E-mail: zxdljll@163.com;谭晓茗 女, 博士, 副教授.主要研究方向: 强化传热及主动流动控制等. E-mail: txmyy@nuaa.edu.cn
  • 基金资助:

    江苏省研究生培养创新工程 (KYLX_0307); 中央高校基本科研业务费专项资金

Investigation of Airflow Allocation Inside High Pressure Turbine Rotor Blade

ZHU Xingdan1, TAN Xiaoming1, GUO Wen2, ZHANG Jingzhou1, WANG Yongming3   

  1. 1. Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. China Gas Turbine Establishment, Chengdu 610500, China;
    3. Guizhou Institute of Aircraft Engine, Guiyang 550004, China
  • Received:2013-12-30 Revised:2014-06-06 Online:2014-12-25 Published:2014-09-19
  • Supported by:

    Foundation of Jiangsu Innovation Program for Graduate Education (KYLX_0307); the Fundamental Research Funds for the Central Universities

摘要:

为了获得涡轮转子叶片内部冷却结构的冷却性能,采用气热耦合计算的方法分析了在相同冷气总量条件下3种不同的气流组织方式对叶片冷却效果的影响,并选择其中相对优化的冷却结构进行了转速对进气压力和综合冷却效率的影响研究.结果表明,B型结构叶片气流组织较为合理,表面温度较为均匀,整体冷却效率得到有效提高;哥氏力和离心浮升力的存在导致冷却气流发生相应偏转,前缘滞止线随转速增加由压力面向吸力面偏移,同时前缘气膜出流随转速发生变化,随着转速增大,压力面综合冷却效率提高,吸力面综合冷却效率下降.

关键词: 涡轮叶片, 转子, 冷却结构, 气流组织, 综合冷却效率, 气热耦合计算

Abstract:

Conjugate heat transfer simulation is used to conduct investigations aiming at obtaining the cooling performance of the internal cooling structures of a certain turbine rotor blade in this paper. Effects of three different airflow allocation methods on the cooling effect of the blade are analyzed under the condition of the same total airflow. Subsequently, the cooling structure with the best cooling performance is chosen to discuss the influence of rotational speed on total inlet pressure and overall cooling effectiveness. The results show that Model B produces more reasonable airflow allocation, obtaining more uniform temperature distribution and higher overall cooling effectiveness. The cooling airflow deflects due to the existence of Coriolis force and centrifugal buoyancy force. The stagnation line located at the blade leading edge is forced to shift from pressure side to suction side with the increase of rotational speed and the film discharges are also changed with the rotational speed. The increasing rotational speed leads to an improvement on pressure surface cooling effectiveness and inversely a decrement on suction surface cooling effectiveness.

Key words: turbine blade, rotor, cooling structure, airflow allocation, overall cooling effectiveness, conjugate heat transfer simulation

中图分类号: