首页 >

小展弦比飞翼标模跨声速横向失稳运动研究

张杰1,李王斌1,王争取1,潘金柱1,卜忱2   

  1. 1. 中国航空工业空气动力研究院
    2. 中航工业空气动力研究院
  • 收稿日期:2021-09-09 修回日期:2021-10-20 出版日期:2021-10-21 发布日期:2021-10-21
  • 通讯作者: 张杰

Investigation on the transonic lateral departure motion characteristics of a low-aspect-ratio flying-wing model

  • Received:2021-09-09 Revised:2021-10-20 Online:2021-10-21 Published:2021-10-21
  • Contact: Jie ZHANG

摘要: 适应于高速巡航、隐身、机动飞行的小展弦比飞翼布局采用了大后掠三角翼外形,在跨声速时会面临与三角翼类似的前缘涡非对称破裂引起的横向失稳运动。为了研究该失稳运动特性及其控制策略,以小展弦比飞翼标模(前缘后掠角65°,展弦比1.54)为研究对象,结合气动/流动一体化测量风洞试验、自由滚转风洞试验以及数值模拟等综合手段,成功地在风洞中捕捉到了M=0.8、0.9,迎角15°~20°条件下的横向失稳运动,包括机翼下落和机翼摇滚运动形式。对失稳运动进行的品质因数分析表明,其横向飞行品质大幅下降。利用频谱和相轨迹分析发现其失稳运动属于混沌或多周期的宽频振荡。采用前缘襟翼下偏10°、内外侧副翼同时下偏10°的组合进行了自由滚转风洞试验对比研究,证明了该舵偏组合在M=0.8,迎角20°时起到了抑制失稳运动的作用。基于CFD手段开展了失稳运动流动机理研究,结果表明在跨声速时,左右机翼的前缘涡在激波干扰下分离不对称,产生的滚转力矩高低频共存,引起了模型自激振荡。

关键词: 小展弦比飞翼, 跨声速, 横向失稳, 机翼下落, 机翼摇滚, 流动机理

Abstract: Adapted for high-speed, stealth and maneuvering flight, the low-aspect-ratio flying-wing aircraft adopts the large sweep delta wing profile. It can meet the uncommanded lateral motion caused by the asymmetric leading vortex breaking similar to delta wing. In order to research this motions and related control methods, aerodynamic/flow integration measurement test, free-to-roll test and numerical simulation are carried on a low-aspect-ratio flying-wing model with leading edge sweep 65 degree and aspect ratio 1.54.It’s successfully captured the commanded lateral motions including wing drop and wing rock at Mach 0.8 and 0.9, angle of attack 15~20 degree conditions in wind tunnel. The Figure Of Merit in free-to-roll test show that the lateral flight quality has declined obviously. The frequency spectrum and phase plane portrait of free-to-roll trajectories confirm that the departure motion characteristics are chaos or multi-periodic broadband oscillation. The combined control surfaces including leading edge flap 10 degree and all aileron 10 degree are used to free-to-roll wind tunnel test. The results verify that the combined control surfaces can restrain the uncommanded lateral motion at Mach 0.8, angle of attack 20 degree condition. The flow principle is also given by numerical simulation. The shock-wave/vortex interactions above the wings at transonic cause the flow breaking asymmetric, there are high and low frequencies in the roll moment, finally bring out the self-excited oscillations of the low-aspect-ratio flying-wing mode.

Key words: low-aspect-ratio flying-wing, transonic, lateral departure motion, wing drop, wing rock, flow principle