航空学报 > 2019, Vol. 40 Issue (12): 123190-123190   doi: 10.7527/S1000-6893.2019.23190

“Ⅳ型”激波干扰中流-热-固耦合问题一体化计算分析

李佳伟, 王江峰, 杨天鹏, 李龙飞, 王丁   

  1. 南京航空航天大学 非定常空气动力学与流动控制工业和信息化部重点实验室, 南京 210016
  • 收稿日期:2019-05-30 修回日期:2019-06-17 出版日期:2019-12-15 发布日期:2019-07-10
  • 通讯作者: 王江峰 E-mail:wangjf@nuaa.edu.cn
  • 基金资助:
    南京航空航天大学国防重大项目培育基金(NP2018402);国家数值风洞项目(NNW2018-ZT3B08);江苏高校优势学科建设工程资助项目

Integrated numerical analysis of fluid-thermal-structural problems in “Type Ⅳ” shock wave interference

LI Jiawei, WANG Jiangfeng, YANG Tianpeng, LI Longfei, WANG Ding   

  1. Key Laboratory of Unsteady Aerodynamics and Flow Control of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2019-05-30 Revised:2019-06-17 Online:2019-12-15 Published:2019-07-10
  • Supported by:
    the Development Foundation for Major National Defense Projects of NUAA (NP2018402);National Numerical Wind Tunnel Project (NNW2018-ZT3B08);A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要: 针对高超声速进气道前缘"Ⅳ型"激波干扰产生的气动加热与结构传热多物理场耦合计算问题,发展了一种基于有限体积法的流-热-固一体化计算方法。该方法采用一体化控制方程组统一离散求解外部高速流场与内部结构温度场,规避了传统分区耦合算法在时间域内交替迭代的繁琐数据交换策略。另外,提出一种新的双温阻模型计算流-固交界面的物性参数以保证计算准确性,采用LU-SGS隐式时间迭代和自适应时间步长以提高计算效率。采用经典高超声速二维圆管流-热-固耦合算例对该一体化方法进行验证,计算结果与试验值和参考文献数据吻合较好,证明了该方法的可靠性和正确性。利用一体化方法对高超声速前缘"Ⅳ型"激波干扰流-热-固耦合问题进行定常/非定常计算与分析,给出了温度与热流的时变特性,计算结果表明,激波干扰作用产生的超声速"喷流"不断冲击壁面,使得壁面最大压力系数增大约9倍,壁面最大热流增大约4.7倍,给高速飞行器的热防护设计与选材带来严峻挑战。同时,也表明了一体化计算方法可以较好地用于长航时飞行条件下与复杂飞行环境下的高超声速热防护系统的热环境特性分析与综合性能评估。

关键词: “Ⅳ型”激波干扰, 流-热-固耦合, 一体化计算方法, 高超声速, 有限体积法

Abstract: An integrated fluid-thermal-structural numerical method based on the finite volume method is proposed to study the thermal behavior of the multi-physical coupling of aerodynamic heating and thermal structural heat transfer for hypersonic cylindrical leading edge with "Type IV" shock wave interference. In this method, the external high-speed flow field and the internal structural temperature field are unified into the integrated governing equations, and the finite volume method is used to perform unified discretization and solution, avoiding the cumbersome data exchange strategy of the traditional partitioned coupling approach. In addition, a new dual temperature resistance model is developed to calculate the physical parameters on the flow-solid interface to ensure the calculation accuracy. The LU-SGS implicit time-stepping scheme and the adaptive unsteady time-step size are used to improve the calculation efficiency. The aerodynamically heated cylinder leading edge is in good agreement with the references and the experimental data, demonstrating the capability and reliability of the integrated method. Issues of the thermal structural response are studied for "Type IV" shock wave interference on hypersonic cylindrical leading edge. The property distributions of temperature and heat flux are obtained and the time-variant characteristics are presented and analyzed. The numerical simulation results show that the jet produced in "Type IV" shock interference impinges perpendicularly to the surface,and shock interference increases the maximum pressure coefficient by about 9 times and the maximum heat flux by about 4.7 times, posting severe challenges to the design and selection of thermal protection for high-speed vehicle. These results also show that the integrated method can provide theoretical and technical support for the comprehensive performance evaluation and optimization of hypersonic thermal protection systems under long-endurance flight conditions and complex flight environments.

Key words: “Type IV” shock wave interference, fluid-thermal-structural coupling, integrated numerical method, hypersonic, finite volume method

中图分类号: