航空学报 > 2020, Vol. 41 Issue (1): 123176-123176   doi: 10.7527/S1000-6893.2019.23176

一种翼身融合飞行器的失速特性研究

付军泉1, 史志伟1, 周梦贝1, 吴大卫2, 潘立军2   

  1. 1. 南京航空航天大学 航空学院, 南京 210016;
    2. 中国商用飞机有限责任公司 上海飞机设计研究院, 上海 201210
  • 收稿日期:2019-05-22 修回日期:2019-07-03 出版日期:2020-01-15 发布日期:2019-09-09
  • 通讯作者: 史志伟 E-mail:szwam@nuaa.edu.cn
  • 基金资助:
    江苏省研究生科研与实践创新计划项目(KYCX18_0250);江苏高校优势学科建设工程资助项目

Stall characteristics research of blended-wing-body aircraft

FU Junquan1, SHI Zhiwei1, ZHOU Mengbei1, WU Dawei2, PAN Lijun2   

  1. 1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Shanghai Aircraft Design and Research Institute, COMAC, Shanghai 201210, China
  • Received:2019-05-22 Revised:2019-07-03 Online:2020-01-15 Published:2019-09-09
  • Supported by:
    Postgraduate Research &Practice Innovation Program of Jiangsu Province (KYCX18_0250); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要: 翼身融合(BWB)布局飞行器作为下一代商用飞机的主要构型之一,越来越受到重视。对于翼身融合飞行器的研究主要针对其巡航状态的特性,而对其失速特性的研究较少。对一种翼身融合客机构型进行风洞试验研究,采用测力试验方法对其无增升装置的构型,以及具有翼梢小翼、前缘缝翼和机身上部双吊舱的组合部件构型下的纵向特性进行研究,特别是对其失速特性的分析,并通过二维粒子图像测试技术以及油流试验对其失速过程的流动机理进行研究。结果表明,无增升装置的基本构型下,翼身融合飞行器可以保持低速飞行,而各组合构型都具有提高最大升力系数的作用。对失速过程的分析表明,随着迎角的增大,飞机表面流场分离区域从翼梢开始逐渐向翼根以及机身发展,当外翼段完全处于分离区域时,飞机并不会马上失速,因为中心体同样具有提供升力的作用,且中心体的流动分离较外翼的流动分离更晚,所以当外翼在失速迎角出现升力损失时可以通过中心体的升力进行补偿,维持其低速飞行状态,真正的失速发生在中心体出现流动分离之后。

关键词: 翼身融合, 风洞试验, 失速特性, 流场分析, 测力分析

Abstract: As one of the main configurations of the next generation's commercial aircraft, Blended-Wing-Body (BWB) configuration aircraft has attracted more and more attention. While the research of BWB aircraft is mainly focused on the characteristics of its cruise phase, few have studied the stall characteristics. In this paper, the BWB is studied by wind tunnel test. The configuration of the non-lift device and the longitudinal characteristics of the composite components with winglet, leading edge slat, and double nacelles are studied by the force measurement method, especially the stall characteristics. The flow mechanism of the stall process is studied by the two-dimensional image testing technology. The results show that the BWB aircraft can maintain low-speed flight in the basic configuration without lift-up device, and the combination configuration has the effect of increasing lift coefficient. And with the increase of the angle of attack, the separation region gradually develops from the wing tip to the wing root and the fuselage. When the outer wing is completely in the separation region, the aircraft will not stall immediately. Because the centrosome also provides lift, and the flow separation of the centrosome is later than the outer wing. Therefore, when the outer wing causes lift loss at stall angle of attack, the lift of the centrosome can be compensated to maintain its low-speed flight phase. The real stall occurs after the flow separation of the centrosome.

Key words: blended-wing-body, wind tunnel test, stall characteristics, flow field analysis, force measurement analysis

中图分类号: