Please wait a minute...
航空学报 > 2017, Vol. 38 Issue (9): 220832-220832   doi: 10.7527/S1000-6893.2017.220832
基于贝叶斯理论的低循环疲劳寿命模型不确定性量化
王荣桥1,2,3, 刘飞1, 胡殿印1,2,3, 李达1
1. 北京航空航天大学 能源与动力工程学院, 北京 100083;
2. 先进航空发动机协同创新中心, 北京 100083;
3. 航空发动机结构强度北京市重点实验室, 北京 100083
Uncertainty quantification in low cycle fatigue life model based on Bayesian theory
WANG Rongqiao1,2,3, LIU Fei1, HU Dianyin1,2,3, LI Da1
1. School of Energy and Power Engineering, Beihang University, Beijing 100083, China;
2. Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100083, China;
3. Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100083, China
下载:  PDF (3343KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

为量化低循环疲劳寿命模型中的不确定性因素,利用贝叶斯理论,采用经典的模型校准形式确立了寿命模型的不确定性量化形式,并结合正态性检验对误差项进行验证;应用马尔可夫链-蒙特卡罗(MCMC)算法获得了模型参数后验分布的抽样样本,在小子样试验数据条件下确定了低循环疲劳寿命的95%不确定性区间,较好地覆盖了寿命的分散性;对参数样本进行了相关性分析,并将异方差回归概率模型与贝叶斯概率模型进行了比较。最后,利用Morris全局灵敏度分析方法获得了Manson-Coffin模型参数的全局灵敏度指标;同时,验证了在模型参数对先验信息敏感,或者说在先验信息影响极大的情况下,采用无信息先验处理方法的合理性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王荣桥
刘飞
胡殿印
李达
关键词:  贝叶斯理论  不确定性量化  低循环疲劳  概率模型  全局灵敏度    
Abstract: 

To quantify the uncertainties in the model for low cycle fatigue life prediction, the classic model calibration method is applied using Bayesian theory, and the error term was verified by the normality test. Posterior distribution of the model parameter samples is obtained by Markov Chain-Monte Carlo (MCMC) simulation. An application is presented where a 95% interval of fatigue life prediction well describes the dispersity in real tests with small data samples. Correlation analysis of the samples of parameters is conducted to establish the heteroscedastic regression model. Comparison of the two models shows that the heteroscedastic regression model is questionable in uncertainty quantification performance. Morris global sensitivity analysis method is applied to quantify the sensitivity of the parameters in Manson-Coffin model, indicating that the non-informative prior is reasonable if posterior distribution is sensitive to the prior.

Key words:  Bayesian theory    uncertainty quantification    low cycle fatigue    probabilistic model    global sensitivity
收稿日期:  2016-10-08      修回日期:  2017-05-31           出版日期:  2017-09-15      发布日期:  2017-06-02      期的出版日期:  2017-09-15
ZTFLH:  V231.95  
  O346.2+3  
基金资助: 

国家自然科学基金(51675024,51305012,51375031);航空科学基金(2014ZB51)

通讯作者:  胡殿印    E-mail:  hdy@buaa.edu.cn
引用本文:    
王荣桥, 刘飞, 胡殿印, 李达. 基于贝叶斯理论的低循环疲劳寿命模型不确定性量化[J]. 航空学报, 2017, 38(9): 220832-220832.
WANG Rongqiao, LIU Fei, HU Dianyin, LI Da. Uncertainty quantification in low cycle fatigue life model based on Bayesian theory. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(9): 220832-220832.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2017.220832  或          http://hkxb.buaa.edu.cn/CN/Y2017/V38/I9/220832

[1] 胡殿印, 裴月, 王荣桥, 等. 涡轮盘结构概率设计体系的研究[J]. 航空学报, 2008, 29(5): 1144-1149. HU D Y, PEI Y, WANG R Q, et al. Research of probabilistic design system for turbine disk structure[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1144-1149 (in Chinese).
[2] 胡殿印, 裴月, 王荣桥, 等. 涡轮盘低循环疲劳的概率设计[J]. 推进技术, 2008, 29(4): 481-487. HU D Y, PEI Y, WANG R Q, et al. Probability design of low cycle fatigue for turbine disk[J]. Journal of Propulsion Technology, 2008, 29(4): 481-487 (in Chinese).
[3] 汤咏. 基于不确定性的航空发动机涡轮盘概率疲劳寿命预测模型[D]. 成都: 电子科技大学, 2013: 4-5. TANG Y. Fatigue life prediction model of aeroengine turbine disk based on uncertainty[D]. Chengdu: University of Electronic Science and Technology, 2013: 4-5 (in Chinese).
[4] BALDWIN J D, THACKER J G. A strain-based fatigue reliability analysis method[J]. Journal of Mechanical Design, 1995, 117(2): 229-234.
[5] ZHAO J, TANG J, WU H C. A reliability assessment method in strain-based fatigue life analysis[J]. Journal of Pressure Vessel Technology, 1998, 120(1): 99-104.
[6] 唐俊星, 陆山. 某涡轮盘低循环疲劳概率寿命数值模拟[J]. 航空动力学报, 2006, 21(4): 706-710. TANG J X, LU S. Numerical simulation of low cycle fatigue life of a turbine disk[J]. Journal of Aerospace Power, 2006, 21(4): 706-710 (in Chinese).
[7] BARGMANN H, RVSTENBERG I, DEVLUKIA J. Reliability of metal components in fatigue: A simple algorithm for the exact solution[J]. Fatigue & Fracture of Engineering Materials & Structures, 1994, 17(12): 1445-1457.
[8] 朱顺鹏, 黄洪钟, 甘露萍, 等. 基于模型不确定性量化的涡轮盘结构概率寿命预测[C]//中国运筹学会可靠性分会可靠性学术会议. 北京: 中国运筹学会, 2013: 261-269. ZHU S P, HUANG H Z, GAN L P, et al. Probabilistic life prediction for aircraft turbine disk based on model uncertainty quantification[C]//Reliability Academic Conference of the Reliability Branch of China Operational Research Society. Beijing: China Operational Research Society, 2013: 261-269 (in Chinese).
[9] ACEBAL R. Guide for the verification and validation of computational fluid dynamics simulation: AIAA-1998-0077[R]. Reston, VA: AIAA, 1998.
[10] KENNEDY M C, O’HAGAN A. Bayesian calibration of computer models[J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2001, 63(3): 425-464.
[11] ANGEL U, SANKARAN M, THOMAS L P. Quanlification of margins and uncertainties of complex systems in the presence of aleatoric and epistemic uncertainty[J]. Realibity Engineering and System Safety, 2011, 96(9): 1114-1125.
[12] 高阳, 白广忱, 张瑛莉. 涡轮盘低循环疲劳寿命的概率分析[J]. 航空动力学报, 2009, 24(4): 804-809. GAO Y, BAI G C, ZHANG Y L. Probability analysis for the low cycle fatigue life of a turbine disk[J]. Journal of Aerospace Power, 2009, 24(4): 804-809 (in Chinese).
[13] 中国金属学会高温材料分会. 中国高温合金手册[M]. 北京: 中国质检出版社, 2012: 870-874. High Temperature Materials Branch of Chinese Society of Metals. China high temperature alloy handbook[M]. Beijing: China Zhijian Publishing House, 2012: 870-874 (in Chinese).
[14] SHANKAR S. Uncertainty qualification in fatigue damage prognosis[C]//Annual Conference of the Prognostics and Health Management Society, 2009: 1-13.
[15] CHAO M A, MATHÉ P, SCHLO?HAUER V, et al. Calibration and uncertainty quantification of gas turbines performance models: GT 2015-42392[R]. New York: ASME, 2015.
[16] 姚伟, 白广忱. 基于Fourier正交基神经网络的涡轮盘低循环疲劳可靠性分析[J]. 装备制造技术, 2014(10): 132-134. YAO W, BAI G C. Reliability analysis of low cycle fatigue of turbine disk based on Fourier orthogonal neural network[J]. Equipment Manufacturing Technology, 2014(10): 132-134 (in Chinese).
[17] 高阳, 白广忱, 陈冲. 基于RBF神经网络的涡轮盘疲劳可靠性分析[J]. 机械设计, 2009, 26(5): 8-14. GAO Y, BAI G C, CHEN C. Fatigue reliability analysis of turbine disk based on RBF neural network[J]. Journal of Machine Design, 2009, 26(5): 8-14 (in Chinese).
[18] 唐俊星, 陆山. 轮盘应变疲劳寿命可靠性分析方法[J]. 推进技术, 2005, 26(4): 344-347. TANG J X, LU S. Reliability analysis method for the strain fatigue life of a disk[J]. Journal of Propulsion Technology, 2005, 26(4): 344-347 (in Chinese).
[19] 傅惠民. 线性异方差回归分析[J]. 航空学报, 1994, 15(3): 295-302. FU H M. Linear variance regression analysis[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(3): 295-302 (in Chinese).
[20] GARNER R H, O’NEILL R V, MANKIN J B. A comparison of sensitivity and error analysis based on a stream ecosystem model[J]. Ecological Modelling, 1981, 12(3): 173-190.
[21] 孙艳伟, 把多铎, 王文川, 等. SWMM模型径流参数全局灵敏度分析[J]. 农业机械学报, 2012, 43(7): 43-49. SUN Y W, BA D D, WANG W C, et al. Global sensitivity analysis of runoff parameters of SWMM model[J]. Chinese Journal of Agricultural Machinery, 2012, 43(7): 43-49 (in Chinese).
[22] 钱文学, 尹晓伟, 何雪浤, 等. 压气机轮盘疲劳寿命影响参量的灵敏度分析[J]. 东北大学学报:自然科学版, 2006, 27(6): 677-680. QIAN W X, YIN X W, HE X H, et al. Sensitivity analysis of influential parameter on the fatigue life of compressor disk[J]. Journal of Northeastern University: Natural Science, 2006, 27(6): 677-680 (in Chinese).

[1] 冯凯旋, 吕震宙, 蒋献. 基于偏导数的全局灵敏度指标的高效求解方法[J]. 航空学报, 2018, 39(3): 221699-221699.
[2] 赵海龙, 岳珠峰, 刘伟. 矩独立重要性分析的Kriging代理模型方法[J]. 航空学报, 2016, 37(7): 2234-2241.
[3] 阮文斌, 刘洋, 熊磊. 基于全局灵敏度分析的侧向气动导数不确定性对侧向飞行载荷的影响[J]. 航空学报, 2016, 37(6): 1827-1832.
[4] 巩祥瑞, 吕震宙, 左健巍. 两种基于方差的全局灵敏度分析W指标改进算法[J]. 航空学报, 2016, 37(6): 1888-1898.
[5] 王翔宇, 王跃, 鲍蕊, 蒋崇文, 万志强. 基于巡检方案事件检出概率的长距管线无人机总体设计[J]. 航空学报, 2016, 37(1): 193-206.
[6] 杨晓光, 黄佳, 王井科, 胡晓安, 石多奇. 定向凝固镍基高温合金缺口低循环疲劳性能及寿命预测[J]. 航空学报, 2013, 34(7): 1596-1604.
[7] 张保强, 陈国平, 郭勤涛. 模型确认热传导挑战问题求解的贝叶斯方法[J]. 航空学报, 2011, 32(7): 1202-1209.
[8] 闫晓军, 邓瑛, 孙瑞杰, 谢建文. 定向凝固涡轮叶片不同部位材料疲劳性能差异研究[J]. 航空学报, 2011, 32(10): 1930-1936.
[9] 高阳;白广忱;张瑛莉. 涡轮盘多轴低循环疲劳寿命可靠性分析[J]. 航空学报, 2009, 30(9): 1678-1682.
[10] 胡殿印;裴月;王荣桥;李其汉. 涡轮盘结构概率设计体系的研究[J]. 航空学报, 2008, 29(5): 1144-1149.
[1] Wan Min;Zhang Weihong;Tan Gang. Efficient Simulation Model of Material Removal in Peripheral Milling of Thin-walled Workpiece[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(5): 1247 -1251 .
[2] Qiao Lihong;Chen Shuai. A Manufacturing Information Mapping and Integration Method Supporting Information Sharing Between Application Systems[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(7): 1494 -1500 .
[3] CHEN Ke;CAO Yi-hua;AUNG Ko-wynn;LI Dong. Application of Hybrid Grid to Analyzing Complex Iced Airfoil Aerodynamic Performance[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(增): 87 -91 .
[4] Rong Yisheng;Liu Weiqiang. Influence of Opposing Jet on Flow Field and Aerodynamic Heating at Nose of a Reentry Vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1552 -1557 .
[5] Zhu Xue-ou. SIMULATED METHOD OF FLOW RATE AT COOLING SIDE OF RADIATOR[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(6): 333 -334 .
[6] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 .
[7] DAI Xin-jin;LIN Jia-hao;CHEN Hao-ran. Non-stationary Random Vibration Analysis of Composite Laminated Structures Attached with Frequencydependant Damping Layer[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(增): 109 -115 .
[8] Xia Yun-cheng. COMPACT ELECTROMECHANICAL ACTUATION SYSTEM[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(6): 334 -335 .
[9] Li Pan;Chen Renliang. Rotor Tip Vortex Model and Its Effect on Free-vortex Wake Analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1517 -1523 .
[10] TAN Hui-jun;GUO Rong-wei. Wind Tunnel Tests of Hypersonic Inlets for Ramjet Modules of  Ramjet scramjet Combined Engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 783 -790 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed