Please wait a minute...
航空学报 > 2015, Vol. 36 Issue (3): 703-713   doi: 10.7527/S1000-6893.2014.0355
新一代多用途载人飞船概念研究
杨雷, 张柏楠, 郭斌, 左光, 石泳, 黄震
中国空间技术研究院 载人航天总体部, 北京 100094
Concept definition of new-generation multi-purpose manned spacecraft
YANG Lei, ZHANG Bainan, GUO Bin, ZUO Guang, SHI Yong, HUANG Zhen
Institution of Manned Spacecraft System Engineering, China Academy of Space Technology, Beijing 100094, China
下载:  PDF (1609KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

在"神舟"载人飞船进入成熟稳定期后,中国有必要尽早启动新一代多用途载人飞船的论证和研制。本文对国外新一代载人飞船的技术方案特点、新的设计理念及发展现状进行了分析,从适应多任务、降低运营成本、钝头体气动外形、更高安全可靠性以及新型轻质材料使用等多个方面总结了国外新一代载人飞船的技术发展趋势。初步分析了中国发展新一代载人飞船的近地轨道、载人登月、载人登小行星、载人登火星等任务需求,基本确定了新一代飞船的总体性能参数,并在此基础上梳理了新一代载人飞船技术途径,初步提出了两种方案设想,为中国新一代载人飞船的研制提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨雷
张柏楠
郭斌
左光
石泳
黄震
关键词:  新一代载人飞船  多用途  逃逸  再入  任务需求  总体方案    
Abstract: 

With the Shenzhou spacecraft entering into the stage of maturity, it is of necessity to launch the research and development of a new-generation multi-purpose manned spacecraft. In this paper, we firstly generalize the technological characteristics, the design concept and the status quo of the foreign new-generation manned spacecraft. Based on this, we summarize their technological trend, i.e., multi-task adaption, cost reduction, bluntbody aerodynamic configuration, high safety reliability and new lightweight materials. Then, we primarily analyze the task requirements of China's new-generation manned spacecraft, including low earth orbit flight mission, as well as manned flights to the Moon, the asteroid and the Mars. We basically set the parameters of the overall performance. Finally, we sort out the technological approaches of it and propose two design schemes, which could provide some reference for the research of China's new-generation manned spacecraft.

Key words:  new-generation manned spacecraft    multi-purpose    launch abort    reentry    task requirement    design scheme
收稿日期:  2014-08-13      修回日期:  2014-12-19           出版日期:  2015-03-15      发布日期:  2015-03-31      期的出版日期:  2015-03-15
ZTFLH:  V475  
通讯作者:  郭斌 男, 博士研究生, 工程师。主要研究方向: 航天器再入返回。Tel: 010-68111049 E-mail: robbin204@163.com    E-mail:  robbin204@163.com
作者简介:  杨雷 男, 博士, 研究员, 载人登月项目技术负责人。主要研究方向: 载人航天器总体。Tel: 010-68114388 E-mail: yanglei@cast.net;张柏楠 男, 硕士, 研究员, 载人航天工程飞船系统总设计师。主要研究方向: 载人航天工程总体设计。Tel: 010-68745561
引用本文:    
杨雷, 张柏楠, 郭斌, 左光, 石泳, 黄震. 新一代多用途载人飞船概念研究[J]. 航空学报, 2015, 36(3): 703-713.
YANG Lei, ZHANG Bainan, GUO Bin, ZUO Guang, SHI Yong, HUANG Zhen. Concept definition of new-generation multi-purpose manned spacecraft. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(3): 703-713.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2014.0355  或          http://hkxb.buaa.edu.cn/CN/Y2015/V36/I3/703

[1] Wang Y, Lu Y P. Relating technical analysis of the Constellation Program[C]//Proceedings of the 13th National Conference on Control Technology of the Space and Moving Body. Beijing: Chinese Association of Automation, 2008: 328-332 (in Chinese). 王银, 陆宇平. "星座"计划相关技术分析[C]//全国第十三届空间及运动体控制技术学术年会论文集. 北京: 中国自动化学会, 2008: 328-332.



[2] Wang M Y. The future of the American manned Constellation Program[J]. Space International, 2009(3): 22-25 (in Chinese). 王鸣阳. 美国载人航天星座计划的未来[J]. 国际太空, 2009(3): 22-25.



[3] Deng X M. The Constellation Program that realizing man's back to the Moon[J]. World Science, 2009(8): 7-8 (in Chinese). 邓雪梅. 实现人类重返月球的"星座"计划[J]. 世界科学, 2009(8): 7-8.



[4] Huang Z C. Why was the American Constellation Program cancelled[J]. Space Exploration, 2010(3): 22-23 (in Chinese). 黄志澄. 美国重返月球计划为何胎死腹中[J]. 太空探索, 2010(3): 22-23.



[5] Zhang R. Development of American human spaceflight commercial transportation[J]. Spacecraft Engineering, 2011, 20(6): 87-89 (in Chinese). 张蕊. 美国载人航天商业运输的发展[J]. 航天器工程, 2011, 20(6): 87-89.



[6] David E W. Commercial crew development environmental control and life support system status, JSC-CN-22060[R]. Houston, TX: Johnson Space Center, 2011.



[7] Daniel Z, Sam W, Bong W. The first human asteroid mission: target selection and conceptual mission design, AIAA-2010-8370[R]. Reston: AIAA, 2010.



[8] Paul M, Larry P. Orion multi purpose crew vehicle exploration flight test objectives[C]//63th IAC. Naples: International Aerospace Federation, 2012: IAC-12.B6.1.9.



[9] John F L, Richard A B, Cynthia D C, et al. Multi purpose crew vehicle environmental control and life support development status, JSC-CN-27502[R]. Houston, TX: Johnson Space Center, 2012.



[10] Detlef W. Building transatlantic partnerships in space exploration the MPCV-SM study, E18271[R]. Cleveland,OH: Glenn Research Center, 2012.



[11] Murphy K J, Bibb K L, Brauckmann G J, et al. Orion crew module aerodynamic testing, AIAA-2011-3502[R]. Reston: AIAA, 2011.



[12] Bibb K L, Walker E L, Brauckmann G J, et al. Development of the orion crew module static aerodynamic database, Part II: supersonic/subsonic, AIAA-2011-3507[R]. Reston: AIAA, 2011.



[13] NASA selects SpaceX to be part of America's human spaceflight program[EB/OL].[2014-06-01]. http://www.spacex.com/news/2014/09/16/nasa-selects-spacex-be-part-americas-human-spaceflight-program.



[14] Lauren D. Latest developments on SpaceX's Falcon 1 and Falcon 9 launch vehicles and dragon spacecraft[C]//The International IEEE Aerospace Conference. Piscataway, NJ: IEEE, 2009: 1-15.



[15] Paul M. Gotcha! Robot arm plugs SpaceX Dragon into the ISS[EB/OL]. (2012-05-25) [2014-06-01]. http://www.newscientist.com/blogs/shortsharpscience/2012/05/grapple-and-hold-dragon-berths.html.



[16] Chen J. Brief analysis of the docking test of the American Dragon spacecraft and International Space Station[J]. Aerospace China, 2012(8): 24-29 (in Chinese). 陈杰. 美国"龙"飞船国际空间站对接试验简析[J]. 中国航天, 2012(8): 24-29.



[17] Long F. The American private Dragon spacecraft fly to the International Space Station[J]. Aerospace China, 2012(8): 20-23 (in Chinese). 龙飞. 美私营"龙"飞船飞往国际空间站[J]. 中国航天, 2012(8): 20-23.



[18] Mckinney J, Ferguson P, Weber M L, et al. Initial testing of the CST-100 aerodynamic deceleration system, AIAA-2013-1263[R]. Reston: AIAA, 2013.



[19] McCann J R, DePauw T, McKinney J, et al. Boeing CST-100 landing and recovery system design and development of an integrated approach to landing, AIAA-2013-5306[R]. Reston: AIAA, 2013.



[20] Mckinney J, Ferguson P, Weber M L, et al. Boeing CST-100 landing and recovery system design and development testing, AIAA-2013-1262[R]. Reston: AIAA, 2013.



[21] Zea L, Over S, Klaus D, et al. Development of a cockpit architecture for the Dream Chaser orbital vehicle, AIAA 2012-3421[R]. Reston: AIAA, 2012.



[22] Howard R D, Crevor Z C, Mosher T, et al. Dream Chaser commercial crewed spacecraft overview, AIAA-2011-2245[R]. Reston: AIAA, 2011.



[23] Erik S. SpaceX: making commercial spacecraft a reality[M]. Chichester, UK: Praxis Publishing, 2013: 123-128.



[24] Frank W T, Russell H. Dream ChaserTM for space transportation: tourism, NASA and military integrated on an Atlas V, AIAA-2008-7837[R]. Reston: AIAA, 2008.



[25] Molly K M, Jonathan G M. Dream Chaser environmental control and life support system: an overview, AIAA-2012-3453[R]. Reston: AIAA, 2012.



[26] Molly K M, Jonathan G M. Dream Chaser thermal control system: an overview, AIAA-2012-3452[R]. Reston: AIAA, 2012.



[27] Krevor Z, Howard R, Mosher T. Achieving full ascent abort coverage with the dream chaser space system, AIAA-2011-7102[R]. Reston: AIAA, 2011.



[28] David W, Leonard E. Dream Chaser on-orbit operations: preliminary trajectory design and analysis, AIAA-2011-6654[R]. Reston: AIAA, 2011.



[29] Jackson P. Jane's all the world's aircraft[J]. London: Jane's Information Group, 2014.



[30] Carr R W, Lagimoniere E. Range safety footprint analysis for the Dream Chaser engineering test article using trajectory optimization, AIAA-2013-4647[R]. Reston: AIAA, 2013.



[31] Yang G. The Russian new manned spacecraft project—PPTS[J]. Aerospace China, 2011(7): 16-21 (in Chinese). 阳光. 俄罗斯的新载人飞船项目——PPTS[J]. 中国航天, 2011(7): 16-21.



[32] Russian space program: a decade review[EB/OL](2010-02-19). [2014-06-01]http://www.russianspaceweb.com/russia_2010s.html



[33] Evolution of the PTK NP design[EB/OL]. [2014-06-01]. http://www.russianspaceweb.com/ptk_va.html



[34] PPTS spacecraft development during 2009[EB/OL]. [2014-06-01]. http://www.russianspaceweb.com/ptk_pu.html.



[35] Zavyalov V, Metan v kosmicheskoi ustanovke. Space equipment race[EB/OL]. [2014-06-01]. http://zavjalov.okis.ru/metan.html (in Russian). Zavyalov V, Metan v kosmicheskoi ustanovke. Метан в космической установке[EB/OL]. [2014-06-01]. http://zavjalov.okis.ru/metan.html.

[1] 张声伟, 段卓毅, 耿建中, 王立波. 阻拦索断裂对螺旋桨舰载机着舰安全影响数值分析[J]. 航空学报, 2019, 40(4): 622293-622293.
[2] 王肖, 郭杰, 唐胜景, 祁帅. 基于解析剖面的时间协同再入制导[J]. 航空学报, 2019, 40(3): 322565-322565.
[3] 郑建军, 唐吉运, 王彬文. C919飞机全机静力试验技术[J]. 航空学报, 2019, 40(1): 522364-522364.
[4] 方科, 张庆振, 倪昆, 程林, 黄云涛. 高超声速飞行器时间协同再入制导[J]. 航空学报, 2018, 39(5): 321958-321958.
[5] 黄汉斌, 梁禄扬, 杨业. 基于阻力加速度倒数剖面的再入轨迹规划与制导方法[J]. 航空学报, 2018, 39(12): 322558-322558.
[6] 周述光, 国义军, 贺立新, 刘骁. 再入弹头三维非对称烧蚀外形模拟[J]. 航空学报, 2017, 38(12): 121397-121397.
[7] 顾杰, 张曙光, 杨帆, 王保印. 再入飞行器沉浮特性近似解析及应用[J]. 航空学报, 2017, 38(10): 121174-121174.
[8] 张金凤, 何重阳, 梁彦. 面向再入目标跟踪的估计与辨识联合优化算法[J]. 航空学报, 2016, 37(5): 1634-1643.
[9] 王林林, 于剑桥, 王亚飞. 变质心再入弹头螺旋机动突防弹道设计[J]. 航空学报, 2016, 37(5): 1484-1493.
[10] 崔乃刚, 黄荣, 傅瑜, 韩鹏鑫. 基于匹配渐进展开的跳跃式再入解析预测-校正制导律设计[J]. 航空学报, 2015, 36(8): 2764-2772.
[11] 呼卫军, 卢青, 常晶, 周军. 特征趋势分区Gauss伪谱法解再入轨迹规划问题[J]. 航空学报, 2015, 36(10): 3338-3348.
[12] 杨勇, 张辉, 郑宏涛. 有翼高超声速再入飞行器气动设计难点问题[J]. 航空学报, 2015, 36(1): 49-57.
[13] 方方, 周璐, 李志辉. 航天器返回地球的气动特性综述[J]. 航空学报, 2015, 36(1): 24-38.
[14] 杜昕, 李海阳, 沈红新. 基于路径约束分析的跳跃式再入轨迹优化[J]. 航空学报, 2014, 35(5): 1265-1275.
[15] 王俊, 裴海龙, 王乃洲. 基于再入轨迹和气动热环境的返回舱烧蚀研究[J]. 航空学报, 2014, 35(1): 80-89.
[1] LIU Shi-bin. Study on Automatic Magnetic Deviation Compensation  of Magnetic Heading Measurement for UAV[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(2): 411 -414 .
[2] Zhang Yanjun;Chen Aixin. Design and Realization of Ka-band High-gain Circularly Polarized Airborne Microstrip Antenna Array[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(6): 1245 -1249 .
[3] Dong Yanfei;Wang Liyuan;Zhang Hengxi. Synthesized Index Model for Fighter Plane Air-to-surface Target Attacking Effectiveness Assessment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(6): 1374 -1377 .
[4] Li Huili;Lang Lihui;Jiao Wei;Zhang Jianyong;Wu Xiaoping. Instability of Large-scale Isoshear Stress Wire-winding Prestressed Cylinder[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(10): 2062 -2067 .
[5] Bu Kun;Dong Yiwei;Yao Changfeng;Zhang Dinghua. Numerical Simulation Analysis of Displacement Field for Investment Casting[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(1): 165 -170 .
[6] Chen Jizheng;Yuan Jianping;Fang Qun. Attitude Estimation Algorithm Based on Rodrigues Parameter[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2008, 29(4): 960 -965 .
[7] Zhai Weiwei;Zhang Gong;Liu Wenbo. Study of Reduced-rank STAP Based on Estimation of Clutter Subspace for MIMO Radar[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(9): 1824 -1831 .
[8] Zhang Shaojie;Hu Shousong. Neural Network Based Robust Adaptive Control for MIMO  Nonlinear Minimum Phase Systems[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2008, 29(5): 1302 -1307 .
[9] Wang Zhiqiang;Hu Jun;Wang Yingfeng;Zhai Xianchao. Aerodynamic Design of Low-speed Model Compressor for Low-speed Model Testing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(4): 715 -723 .
[10] LIU Gang;WANG Xing-ren;JIA Rong-zhen. Technique for Dynamic Virtual Prototype of Aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2005, 26(5): 550 -555 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed