Please wait a minute...
航空学报 > 2015, Vol. 36 Issue (2): 473-483   doi: 10.7527/S1000-6893.2014.0270
基于LADRC的无人直升机轨迹跟踪
吴超1, 王浩文2, 张玉文2, 谭剑锋3, 倪先平1
1. 南京航空航天大学 直升机旋翼动力学重点实验室, 南京 210016;
2. 清华大学 航天航空学院, 北京 100084;
3. 南京工业大学 机械与动力工程学院, 南京 210086
LADRC-based trajectory tracking for unmanned helicopter
WU Chao1, WANG Haowen2, ZHANG Yuwen2, TAN Jianfeng3, NI Xianping1
1. Science and Technology on Rotorcraft Aeromechanics Laboratory, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. School of Aerospace, Tsinghua University, Beijing 100084, China;
3. School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210086, China
下载:  PDF (5579KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

无人直升机轨迹控制系统是对多输入/多输出强耦合非线性系统进行解耦控制的系统。为解决无人直升机轨迹控制效果依赖于直升机物理参数的测量和辨识精度以及外部扰动大小问题,提出了一种基于线性自抗扰控制(LADRC)的多回路无人直升机轨迹控制系统。首先建立无人直升机X-Cell的飞行动力学模型,并引入风切变、大气紊流和突风模型以更加准确模拟真实飞行环境;然后对X-Cell进行配平计算以验证动力学模型和配平算法的准确性,并选取一组配平值作为轨迹控制仿真的初始状态和操纵量;随后根据被控量的动力学方程阶次选取对应的一阶和二阶LADRC基本控制器,并结合时间尺度原理,自内向外依次构建无人直升机的姿态、速度和位置控制回路,将三回路串联从而建立了无人直升机轨迹控制系统;而后进行了稳定性分析,特征根计算结果表明轨迹控制系统镇定了X-Cell开环系统不稳定的动态特性;最后将该控制系统应用于各种扰动下直升机轨迹跟踪仿真,结果表明本文无人直升机轨迹控制系统能很好地实现带爬升率的"8"字形轨迹跟踪,且相比于基于比例积分和微分(PID)控制的轨迹控制系统,该控制系统具有更优的鲁棒性和抗扰性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴超
王浩文
张玉文
谭剑锋
倪先平
关键词:  无人直升机  飞行动力学  线性自抗扰控制  轨迹跟踪  多回路控制  仿真    
Abstract: 

Trajectory tracking control system is used for decoupling the control unmanned helicopter, which is a nonlinear system with multi-input/multi-output and strong coupling effects. In order to avoid the dependence on accuracy of unmanned helicopter physical parameters measurement and identification and to reduce external disturbance impact, a multi-loop controller based on linear active disturbance rejection control (LADRC) is proposed. At first, the flight dynamics model is built for unmanned helicopter X-Cell. The atmospheric disturbance model, which contains wind shear, turbulence and gust model, is also set up for accurate simulation of real flight environment. Secondly, X-Cell is trimmed for verifying the accuracy of dynamic model and trim algorithm. A set of calculation values is selected as the initial state and input of the subsequent simulation. Then attitude, velocity and position control loop are built based on the first-order and second-order LADRC controllers which are selected according to system order. Combined with the time-scale separation principle, the whole trajectory control system is constructed from inner loop to outer loop. After that, the stability of the system is analyzed. The characteristic roots show that the whole system becomes stable with the trajectory controller. Finally, flight simulation experiments under various disturbance conditions are performed. The results show that the established control system can achieve a good climbing figure-eight trajectory tracking. Compared with controller based on proportion integration differentiation(PID), the controller based on LADRC has better robustness and capability of anti-disturbance.

Key words:  unmanned helicopter    flight dynamics    linear active disturbance rejection control    trajectory tracking    multi-loop control    simulation
收稿日期:  2014-06-19      修回日期:  2014-09-23           出版日期:  2015-02-15      发布日期:  2014-10-09      期的出版日期:  2015-02-15
ZTFLH:  V212.4  
基金资助: 

江苏高校优势学科建设工程资助项目(PAPD)

通讯作者:  王浩文 Tel.: 010-62792661 E-mail: bobwang@tsinghua.edu.cn    E-mail:  bobwang@tsinghua.edu.cn
作者简介:  吴超 男,博士研究生。主要研究方向:直升机飞行力学,直升机仿真与控制。E-mail:wuchao_nuaa@163.com;王浩文 男,教授,博士生导师。主要研究方向:直升机动力学,直升机结构强度及振动载荷分析。Tel:010-62792661 E-mail:bobwang@tsinghua.edu.cn;张玉文 男,博士研究生。主要研究方向:飞行器设计。E-mail:great.mountain@qq.com;谭剑锋 男,讲师。主要研究方向:直升机旋翼空气动力学,结构动力学及风力机空气动力学。E-mail:windtam2003@gmail.com;倪先平 男,教授,博士生导师。主要研究方向:飞行器总体设计研究。E-mail:nixianp@sohu.com
引用本文:    
吴超, 王浩文, 张玉文, 谭剑锋, 倪先平. 基于LADRC的无人直升机轨迹跟踪[J]. 航空学报, 2015, 36(2): 473-483.
WU Chao, WANG Haowen, ZHANG Yuwen, TAN Jianfeng, NI Xianping. LADRC-based trajectory tracking for unmanned helicopter. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(2): 473-483.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2014.0270  或          http://hkxb.buaa.edu.cn/CN/Y2015/V36/I2/473

[1] Mettler B, Tischler M B, Kanade T, et al. Attitude control optimization for a small-scale unmanned helicopter[C]//AIAA Guidance, Navigation and Control Conference. Reston: AIAA, 2000: 40-59.

[2] Shim D H, Kim H J, Sastry S. Control system design for rotorcraft-based unmanned aerial vehicles using time-domain system identification[C]//Proceedings of the 2000 IEEE International Conference on Control Applications. Anchorage, Alaska: IEEE, 2000: 808-813.

[3] Budiyono A, Wibowo S S. Optimal tracking controller design for a small scale helicopter[J]. Journal of Bionic Engineering, 2007, 4(4): 271-280.

[4] Pei H L, Hu Y, Wu Y. Gain scheduling control of a small unmanned helicopter[C]//2007 IEEE International Conference on Control and Automation. Guangzhou: IEEE. 2007: 1168-1173.

[5] Castillo C L, Moreno W, Valavanis K P. Unmanned helicopter waypoint trajectory tracking using model predictive control[C]//Control & Automation, 2007. MED'07. Mediterranean Conference on. Athens:IEEE, 2007: 1-8.

[6] Huang Y, Xue W C, Yang X X. Active disturbance rejection control: methodology, theoretical analysis and applications[C]//Proceedings of the 29th Chinese Control Conference. Beijing:[s.n], 2010:29-31 (in Chinese). 黄一, 薛文超, 杨晓霞. 自抗扰控制: 思想、理论分析及运用[C]//第29届中国控制会议论文集. 北京:[出版者不详], 2010: 29-31.

[7] Enns D, Keviczky T. Dynamic inversion based flight control for autonomous RMAX helicopter[C]//American Control Conference. Minneapolis, M N: IEEE, 2006: 3916-3923.

[8] Ahmed B, Pota H R. Flight control of a Rotary wing UAV using adaptive backstepping[C]//Control and Automation, 2009. Christchurch: IEEE, 2009: 1780-1785.

[9] Kannan S K, Johnson E N. Adaptive trajectory based control for autonomous helicopters[C]//Proceedings of 21st Digital Avionics Systems Conference. Irvine: IEEE, 2002, 2: 8D1-1-8D1-12

[10] Wang B, Chen B M, Lee T H. An RPT approach to time-critical path following of an unmanned helicopter[C]//Control Conference (ASCC), 2011 8th Asian. Kaohsiung: IEEE, 2011: 211-216.

[11] Han J Q. Active disturbance rejection controller and its applications[J]. Control and Decision, 1998, 13(1): 19-23(in Chinese). 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19-23.

[12] Gao Z Q. Active disturbance rejection control: a paradigm shift in feedback control system design[C]//American Control Conference. Minneapolis M N: IEEE, 2006: 7.

[13] Gavrilets V. Autonomous aerobatic maneuvering of min-iature helicopters[D].Cambridge: Massachusetts Institute of Technology, 2003.

[14] Wu C, Tan J F, Wang H W, et al. Optimal trim for helicopter based on GA and LM hybrid algorithm[J]. Flight Dynamics,2014,32(1): 5-19 (in Chinese). 吴超, 谭剑锋, 王浩文, 等. 基于GA/LM混合优化的直升机全机配平算法[J]. 飞行力学, 2014, 32(1): 5-19.

[15] Moorhouse D, Woodcock R. US Military Specification MIL-F-8785C[S]. Washington, D. C.: US Department of Defense, 1980:33-70.

[16] Velez C M, Agudelo A. Multirate control of an unmann-ed aerial vehicle[J]. WSEAS Transactions on Circuits and Systems, 2005, 4(11): 1628-1634.

[17] Velez C M. Mathematical model of a mini-helicopter robot ("Colibrí")[EB/OL] .(2013-08-12)[2014-09-1].http: //www.mathworks.com/matlabcentral/fileexchange/35879-mathematical-model-of-a-mini-helicopter-robot-colibr%C3%AD.

[18] Gao Z Q. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the American Control Conference. Minneapolis, Minnesota: IEEE, 2006, 6: 4989-4996.

[19] Naidu D S, Calise A J. Singular perturbations and time scales in guidance and control of aerospace systems: A survey[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(6): 1057-1078.

[1] 原青云, 王松, 黄欣鑫. 航天器介质盘环结构内带电特性三维仿真分析[J]. 航空学报, 2019, 40(9): 323035-323035.
[2] 周亮, 孟进, 吴灏, 刘永才, 刘伟. 反向交叉眼对单脉冲雷达干扰效果分析及仿真验证[J]. 航空学报, 2019, 40(8): 322755-322755.
[3] 刘洁, 韩维, 徐卫国, 刘纯, 袁培龙, 陈志刚, 彭海军. 基于滚动时域的舰载机甲板运动轨迹跟踪最优控制[J]. 航空学报, 2019, 40(8): 322842-322842.
[4] 左沅君, 李峭, 熊华钢, 卢广山. 航空电子MB-OFDM-UWB无线互连信道分析与仿真[J]. 航空学报, 2019, 40(7): 322739-322739.
[5] 吴文海, 高阳, 王子健, 周思羽. 基于LADRC的舰载V/STOL飞机短距起飞性能优化[J]. 航空学报, 2019, 40(6): 122772-122772.
[6] 冯宜明, 王建中, 施家栋. 基于自适应的变形式陆空机器人转域过程飞行控制[J]. 航空学报, 2019, 40(6): 322691-322691.
[7] 郑无计, 李颖晖, 周驰, 武朋玮, 董泽洪. 基于动力学边界的结冰飞机安全预警方法[J]. 航空学报, 2019, 40(4): 122478-122478.
[8] 马凯超, 徐岚玲, 张建叶. 舰载运输类飞机副翼飞行载荷设计[J]. 航空学报, 2019, 40(4): 622262-622262.
[9] 闵强, 王斌团, 王亚芳, 雷晓欣. 舰载机拦阻着舰载荷谱编制技术[J]. 航空学报, 2019, 40(4): 622284-622284.
[10] 张菁, 何友, 彭应宁, 李刚. 基于神经网络和人工势场的协同博弈路径规划[J]. 航空学报, 2019, 40(3): 322493-322493.
[11] 汪存显, 高豪迈, 龚煦, 索涛, 李玉龙, 汤忠斌, 薛璞, 侯亮, 林家坚. 航空铆钉连接件的抗冲击性能[J]. 航空学报, 2019, 40(1): 522484-522484.
[12] 张志成, 张鹏, 高辉, 董为. 多关节脚限位装置机构设计与仿真分析[J]. 航空学报, 2018, 39(S1): 722316-722316.
[13] 吴松, 臧旭, 龙新军, 郭其威. 吊挂式模态试验系统动力学建模和分析[J]. 航空学报, 2018, 39(S1): 722191-722191.
[14] 周源, 王浩伟, 盖炳良. 加速退化模型及外推结果准确度的定量验证方法[J]. 航空学报, 2018, 39(9): 221950-221959.
[15] 王萌萌, 张曙光. 基于模型预测静态规划的自适应轨迹跟踪算法[J]. 航空学报, 2018, 39(9): 322105-322113.
[1] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 .
[2] Cao Xiaorui;Dong Chaoyang;Wang Qing;Chen Yu. Radome Slope Estimation Using Multiple Model Based on EKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1608 -1613 .
[3] WANG Fu-sheng;LI Li-zhou;WANG Xin-jun;ZHANG Jian-feng;YUE Zhu-feng. A Method to Identify Bird’s Material Parameters[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(2): 344 -347 .
[4] Xu Xiaohao;Wang Fei. Research on Slot Allocation Models and Algorithms in Ground Holding Policy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(10): 1993 -2003 .
[5] Yan Zhiqiang;Jiang Yingjie;Xie Hongwei. MS-NHPP Model and Bayesian Analysis for Multistage Reliability Growth with Hybrid Fix Modes[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(4): 785 -790 .
[6] TANG Qi;HUANG Jian-guo;YANG Xu-dong. Study on Approaches for Track Initiation Based on Dynamic States[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(2): 407 -410 .
[7] ZHANG Fu-ze;YE Xu-bin;SONG Jun;GUO Hong-quan. Study on Crack Growth Behaviors of Three Kinds of Aeronautical Materials at 25℃ and -40℃[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(3): 593 -595 .
[8] YUAN Ying-long;LU Zi-xing. Calculation of the Elastic Modulus of Low Density Open-Cell Foams with Random Model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2004, 25(2): 130 -132 .
[9] DU Hong-zeng;TIAN Xun-yun;ZHOU Xuan. Study on Fatigue Damage Threshold[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2003, 24(3): 223 -225 .
[10] GAO Yong-shuan;CHEN Li-qiang;GONG Sheng-kai;XU Hui-bin. Failure Behavior of Thermal Barrier Coatings in Creep Environment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2005, 26(1): 121 -124 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed