Please wait a minute...
航空学报 > 2015, Vol. 36 Issue (2): 492-500   doi: 10.7527/S1000-6893.2014.0115
强迫对流下硼颗粒燃烧特性影响因素研究
方传波, 夏智勋, 胡建新, 王德全
国防科学技术大学 高超声速冲压发动机技术重点实验室, 长沙 410073
Influencing factors of combustion characteristics of boron particle in forced convective flow
FANG Chuanbo, XIA Zhixun, HU Jianxin, WANG Dequan
Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha 410073, China
下载:  PDF (4169KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

针对冲压发动机燃烧室内强迫对流下的硼颗粒燃烧特性展开了系统研究,考虑气相流动、扩散和表面单步有限化学反应动力作用,建立了强迫对流下硼颗粒燃烧过程的物理和数学模型;采用有限体积法求解含多组分反应流的二维轴对称Navier-Stokes方程,并验证了数值仿真方法的正确性。首先通过数值仿真研究了来流速度、颗粒半径、环境中氧气质量分数和环境压力等因素对硼颗粒燃烧特性的影响,并对其成因展开了详细分析。研究表明,在强迫对流作用下,硼颗粒总的燃烧质量流率和质量流率通量均随来流速度、颗粒半径、环境中氧气质量分数和环境压力的增加而增大。通过深入分析发现,强迫对流下硼颗粒的燃烧质量流率通量随着来流雷诺数的增加而增大。然后基于大量数值仿真结果,对相对静止气氛下的硼颗粒质量流率通量进行了修正,用于描述强迫对流下的硼颗粒燃烧特性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方传波
夏智勋
胡建新
王德全
关键词:  强迫对流  硼颗粒  燃烧特性  数值仿真  影响因素    
Abstract: 

The combustion characteristics of single boron particle in forced convective flow in ramjet engines are investigated systemically. A physical and mathematical model is proposed taking into consideration the gas flow around the particle, the gas diffusion and the surface finite reaction dynamics. The two-dimensional axi-symmetric Navier-Stokes equations with species reactions are solved using the finite volume technique. And the numerical simulation method is validated. Then influencing factors such as the free stream velocity, particle radius, the ambient oxygen mass fraction and the ambient pressure on the combustion characteristics of single boron particle are studied by numerical simulations. And the effect mechanism for each factor is analyzed in detail. The numerical prediction results show that in forced convective flow, both the mass rate and the mass flux of the buring boron particle increase with the increase in the free stream velocity, the particle radius, the ambient oxygen mass fraction and the ambient pressure. A comprehensive analysis of the results is conducted and it is found that the mass flux of the buring boron increases with the stream Reynolds number. Then the mass flux of the buring boron particle in the static atmosphere is modified based on abundant numerical results to describe the combustion characteristics of the boron particle in forced convective flow.

Key words:  forced convective flow    boron particle    combustion characteristics    numerical simulation    influencing factors
收稿日期:  2014-03-06      修回日期:  2014-06-08           出版日期:  2015-02-15      发布日期:  2014-06-18      期的出版日期:  2015-02-15
ZTFLH:  V431  
基金资助: 

国家自然科学基金(51276194)

通讯作者:  夏智勋 Tel.: 0731-84576450 E-mail: zxxia@nudt.edu.cn    E-mail:  zxxia@nudt.edu.cn
作者简介:  方传波 男,博士研究生。主要研究方向:固体火箭冲压发动机技术。E-mail:fangchuanbo@163.com;夏智勋 男,博士,教授,博士生导师。主要研究方向:固体火箭冲压发动机技术、水冲压发动机技术和高超声速飞行器总体技术。Tel:0731-84576450 E-mail:zxxia@nudt.edu.cn
引用本文:    
方传波, 夏智勋, 胡建新, 王德全. 强迫对流下硼颗粒燃烧特性影响因素研究[J]. 航空学报, 2015, 36(2): 492-500.
FANG Chuanbo, XIA Zhixun, HU Jianxin, WANG Dequan. Influencing factors of combustion characteristics of boron particle in forced convective flow. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(2): 492-500.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2014.0115  或          http://hkxb.buaa.edu.cn/CN/Y2015/V36/I2/492

[1] Fry R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58.

[2] King M K. Ignition and combustion of boron particles and clouds[J]. Journal of Spacecraft, 1982, 19(4): 294-306.

[3] Li S C. Experimental and theoretical studies of ignition and combustion of boron particles in wet and dry atmospheres[D]. Princeton: Princeton University, 1990.

[4] King M K. Modeling of single particle boron combustion[C]//19th JANNAF Combustion Meeting, 1982: 43-58.

[5] Golovko V V, Vovchuk Y I, Polishchuk D I. Combustion of single particles of boron in chlorine[J]. Combustion, Explosion, and Shock Waves, 1981, 17(5): 521-524.

[6] Ulas A, Kuo K K, Gotzmer C. Ignition and combustion of boron particles in fluorine-containing environments[J]. Combustion and Flame, 2001, 127(1-2): 1935-1957.

[7] Zhou W. Numerical study of muti-phase combustion: ignition and combustion of an isolated boron particle in fluorinated environments[D]. Princeton: Princeton University, 1998.

[8] Wang N F, Guan D L, Fan H J. Development of boron particles ignition and combustion[J]. Chinese Journal of Energetic Materials, 2001, 9(2): 86-89 (in Chinese). 王宁飞, 关大林, 范红杰. 硼颗粒点火和燃烧研究进展[J]. 含能材料, 2001, 9(2): 86-89.

[9] Mao C L, Li B X, Hu S Q, et al. Overview of models of boron particle ignition in hot air[J]. Journal of Propulsion Technology, 2001, 22(1): 6-9 (in Chinese). 毛成立, 李葆萱, 胡松启, 等. 热空气中硼粒子点火模型研究综述[J]. 推进技术, 2001, 22(1): 6-9.

[10] Hu J X, Xia Z X, Wang D Q. Study on burning rate of boron particles in secondary chamber of ducted rocket under forced convection conditions[J]. Journal of Solid Rocket Technology, 2007, 30(1): 21.

[11] Hussmann B, Pfitzner M. Extended combustion model for single boron particles—Part I: Theory[J]. Combustion and Flame, 2010, 157(4): 803-821.

[12] Hussmann B, Pfitzner M. Extended combustion model for single boron particles—Part II: Validation[J]. Combustion and Flame, 2010, 157(4): 822-833.

[13] Pope D N. Numerical simulation of convective fuel droplet vaporization and combustion in a low pressure zero-gravity environment[D]. Lincoln: University of Nebraska, 2001.

[14] Reid R C, Prausnitz J M, Poling B E. In the properties of gases and liquids[M]. New York: McGraw Hill, 1987: 256-364.

[15] Malcolm W C, Jr. NIST-JANNAF thermo chemical tables, Parts I and Ⅱ[M]. 4th ed. New York: American Chemical Society and American Institute of Physics, 1998: 270-1621.

[16] Makino A, Umehara N. Combustion rates of graphite rods in the forward stagnation field of the high-temperature, humid airflow[J]. Proceedings of the Combustion Institute, 2007, 31(2): 1873-1880.

[17] Tao W Q. Numerical heat transfer[M]. 2nd ed. Beijing: Higher Education Press, 2001: 90 (in Chinese). 陶文铨. 数值传热学[M]. 2版. 北京: 高等教育出版社, 2001: 90.

[1] 康忠涛, 李向东, 毛雄兵, 李清廉. 液体火箭发动机中气液同轴直流式喷嘴研究综述[J]. 航空学报, 2018, 39(9): 22221-022221.
[2] 王计真, 刘小川. 鸟撞平板试验与鸟体本构参数识别方法[J]. 航空学报, 2017, 38(S1): 721550-721550.
[3] 巩伦昆, 陈雄, 李唯暄, 杨海涛, 周长省. 固体燃料冲压发动机自持燃烧的影响因素[J]. 航空学报, 2017, 38(7): 120821-120821.
[4] 贺旭照, 乐嘉陵. 曲外锥乘波体进气道实用构型设计和性能分析[J]. 航空学报, 2017, 38(6): 120690-120690.
[5] 陈跃良, 王哲夫, 卞贵学, 王晨光, 张勇. 不同浓度NaCl溶液下典型铝/钛合金电偶腐蚀当量折算关系[J]. 航空学报, 2017, 38(3): 420450-420450.
[6] 巩伦昆, 陈雄, 周长省, 李映坤, 朱敏. 来流条件对SFRJ燃速及自持燃烧性能的影响[J]. 航空学报, 2016, 37(5): 1428-1439.
[7] 徐雪阳, 卓长飞, 武晓松, 李杰, 马虎. 非预混喷注对旋转爆震发动机影响的数值研究[J]. 航空学报, 2016, 37(4): 1184-1195.
[8] 杨大力, 夏智勋, 胡建新, 肖云雷. 煤油凝胶单液滴燃烧特性试验[J]. 航空学报, 2016, 37(3): 847-853.
[9] 王卫星, 郭荣伟. 圆形出口内转式进气道流动特征[J]. 航空学报, 2016, 37(2): 533-544.
[10] 李杰锋, 沈星, 陈金金. 零泊松比胞状结构的单胞面内等效模量分析及其影响因素[J]. 航空学报, 2015, 36(11): 3616-3629.
[11] 王卫星, 郭荣伟. 高超声速进气道自起动过程中流动非定常特性[J]. 航空学报, 2015, 36(10): 3263-3274.
[12] 范志鹏, 徐惊雷, 吕郑, 莫建伟. 型面旋转变马赫数风洞喷管的优化设计[J]. 航空学报, 2014, 35(5): 1216-1225.
[13] 孟松鹤, 金华, 王国林, 杨强, 陈红波. 热防护材料表面催化特性研究进展[J]. 航空学报, 2014, 35(2): 287-302.
[14] 郁嘉, 毛晓东, 林贵平, 卜雪琴. 风对弹射座椅救生性能的影响[J]. 航空学报, 2013, 34(4): 727-740.
[15] 金志光, 张堃元, 陈卫明, 刘媛. 高超声速二元变几何进气道气动方案设计与调节规律研究[J]. 航空学报, 2013, 34(4): 779-786.
[1] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 .
[2] Cao Xiaorui;Dong Chaoyang;Wang Qing;Chen Yu. Radome Slope Estimation Using Multiple Model Based on EKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1608 -1613 .
[3] WANG Fu-sheng;LI Li-zhou;WANG Xin-jun;ZHANG Jian-feng;YUE Zhu-feng. A Method to Identify Bird’s Material Parameters[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(2): 344 -347 .
[4] Xu Xiaohao;Wang Fei. Research on Slot Allocation Models and Algorithms in Ground Holding Policy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(10): 1993 -2003 .
[5] Yan Zhiqiang;Jiang Yingjie;Xie Hongwei. MS-NHPP Model and Bayesian Analysis for Multistage Reliability Growth with Hybrid Fix Modes[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(4): 785 -790 .
[6] TANG Qi;HUANG Jian-guo;YANG Xu-dong. Study on Approaches for Track Initiation Based on Dynamic States[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(2): 407 -410 .
[7] ZHANG Fu-ze;YE Xu-bin;SONG Jun;GUO Hong-quan. Study on Crack Growth Behaviors of Three Kinds of Aeronautical Materials at 25℃ and -40℃[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(3): 593 -595 .
[8] YUAN Ying-long;LU Zi-xing. Calculation of the Elastic Modulus of Low Density Open-Cell Foams with Random Model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2004, 25(2): 130 -132 .
[9] DU Hong-zeng;TIAN Xun-yun;ZHOU Xuan. Study on Fatigue Damage Threshold[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2003, 24(3): 223 -225 .
[10] GAO Yong-shuan;CHEN Li-qiang;GONG Sheng-kai;XU Hui-bin. Failure Behavior of Thermal Barrier Coatings in Creep Environment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2005, 26(1): 121 -124 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed