航空学报 > 2016, Vol. 37 Issue (12): 3588-3604   doi: 10.7527/S1000-6893.2016.0096

压缩拐角激波与旁路转捩边界层干扰数值研究

童福林1, 唐志共1, 李新亮2, 吴晓军1, 朱兴坤2   

  1. 1. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    2. 中国科学院 力学研究所 高温气体动力学国家重点实验室, 北京 100190
  • 收稿日期:2016-01-13 修回日期:2016-03-17 出版日期:2016-12-15 发布日期:2017-01-03
  • 通讯作者: 唐志共,Tel.:0816-2463133,E-mail:515363491@qq.com E-mail:515363491@qq.com
  • 作者简介:童福林,男,博士研究生,助理研究员。主要研究方向:可压缩湍流直接数值模拟,高超声速气动热和热防护。Tel.:0816-2463133,E-mail:wowo2020@sohu.com;唐志共,男,博士,研究员,博士生导师。主要研究方向:高超声速空气动力学。Tel.:0816-2463133,E-mail:515363491@qq.com
  • 基金资助:

    国家自然科学基金(91441103,11372330,11472278)

Numerical study of shock wave and bypass transitional boundary layer interaction in a supersonic compression ramp

TONG Fulin1, TANG Zhigong1, LI Xinliang2, WU Xiaojun1, ZHU Xingkun2   

  1. 1. Computational Aerodynamics Institute of China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2016-01-13 Revised:2016-03-17 Online:2016-12-15 Published:2017-01-03
  • Supported by:

    National Natural Science Foundation of China (91441103, 11372330, 11472278)

摘要:

为了研究激波与旁路转捩边界层的干扰机理,采用直接数值模拟(DNS)方法对来流马赫数Ma=2.9,24°压缩拐角内激波与转捩边界层的相互作用进行了系统的研究。考察了旁路转捩干扰下压缩拐角内分离区形态和激波波系结构的典型特征。比较了转捩干扰与湍流干扰流动结构的差异,并分析了造成差异的原因。研究了拐角内转捩边界层的演化特性,探讨了转捩干扰下脉动峰值压力和峰值摩阻的分布规律及形成机制。研究结果表明:相较于湍流干扰,两侧发卡涡串的展向挤压使得分离区起始点以V字型分布,且分离激波沿展向以破碎状态为主,激波脚呈现多层结构;拐角内的干扰作用急剧加速了边界层的转捩过程;转捩干扰下的拐角内峰值脉动压力以单峰结构出现在分离区的下游,同时干扰区内的强湍动能和高雷诺剪切应力使得其局部峰值摩阻系数要高于湍流干扰。

关键词: 压缩拐角, 激波/边界层干扰, 旁路转捩, 脉动压力, 摩阻, 直接数值模拟

Abstract:

A direct numerical simulation (DNS) of shock wave and bypass transitional boundary layer interaction for a 24° compression ramp at Mach number Ma=2.9 is conducted. The intricate flow phenomena in the ramp-corner, including separation bubble characteristics and shock wave behavior, have been studied systematically. The DNS results of transitional interaction are compared with the corresponding turbulent interaction and the reasons for the differences are analyzed. The evolution of the transitional boundary layer in the ramp is researched. The fluctuation of wall pressure and distribution of skin friction coefficient in transitional interaction are investigated in detail. Results indicate that the distribution of coherent vortex structures is non-uniform in the spanwise direction and the separation bubble is reduced to a V-shape by the mutual interactions of the hairpin vortices chains. The shock fronts are destroyed badly and even break down by the interaction. The multiple layer of shock foots is observed obviously. The interactions rapidly accelerate the evolution of transition and greatly amplify the intensity of fluctuations. The peak of wall pressure fluctuations appears with single-peak structure at the downstream of separation region. And the overshoot of skin friction induced by transitional interaction is explained by the strong Reynolds shear stress and high turbulent kinetic energy.

Key words: compression ramp, shock wave and boundary layer interaction, bypass transition, fluctuation pressure, skin friction, direct numerical simulation

中图分类号: